Related links:
- [Kaldi Github](https://github.com/kaldi-asr/kaldi)
- [Kaldi Documentation](https://kaldi-asr.org/)
- [Downloading and installing Kaldi](https://kaldi-asr.org/doc/install.html)
- [The build process (how Kaldi is compiled)](https://kaldi-asr.org/doc/build_setup.html)
- [Kaldi INSTALL](https://github.com/kaldi-asr/kaldi/blob/master/INSTALL)
Kaldi's requirements:
- OS: Ubuntu, CentOS, MacOSX, Windows, Cygwin, etc.
- GCC >= 4.7
1. Git clone Kaldi
```sh
$ cd
$ git clone https://github.com/kaldi-asr/kaldi
```
1. Install tools
```sh
$ cd /tools
$ make -j
```
1. Select BLAS library from ATLAS, OpenBLAS, or MKL
- OpenBLAS
```sh
$ cd /tools
$ ./extras/install_openblas.sh
```
- MKL (You need sudo privilege)
```sh
$ cd /tools
$ sudo ./extras/install_mkl.sh
```
- ATLAS (You need sudo privilege)
```sh
# Ubuntu
$ sudo apt-get install libatlas-base-dev
```
1. Compile Kaldi & install
```sh
$ cd /src
# [By default MKL is used] ESPnet uses only feature extractor, so you can disable CUDA
$ ./configure --use-cuda=no
# [With OpenBLAS]
# $ ./configure --openblas-root=../tools/OpenBLAS/install --use-cuda=no
# If you'll use CUDA
# ./configure --cudatk-dir=/usr/local/cuda-10.0
$ make -j clean depend; make -j
```
We also have [prebuilt Kaldi binaries](https://github.com/espnet/espnet/blob/master/ci/install_kaldi.sh).