Source code for espnet2.train.preprocessor

from abc import ABC
from abc import abstractmethod
from pathlib import Path
from typing import Collection
from typing import Dict
from typing import Iterable
from typing import List
from typing import Union

import numpy as np
import scipy.signal
import soundfile
from typeguard import check_argument_types
from typeguard import check_return_type

from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.cleaner import TextCleaner
from espnet2.text.token_id_converter import TokenIDConverter


[docs]class AbsPreprocessor(ABC): def __init__(self, train: bool): self.train = train @abstractmethod def __call__( self, uid: str, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, np.ndarray]: raise NotImplementedError
[docs]def framing( x, frame_length: int = 512, frame_shift: int = 256, centered: bool = True, padded: bool = True, ): if x.size == 0: raise ValueError("Input array size is zero") if frame_length < 1: raise ValueError("frame_length must be a positive integer") if frame_length > x.shape[-1]: raise ValueError("frame_length is greater than input length") if 0 >= frame_shift: raise ValueError("frame_shift must be greater than 0") if centered: pad_shape = [(0, 0) for _ in range(x.ndim - 1)] + [ (frame_length // 2, frame_length // 2) ] x = np.pad(x, pad_shape, mode="constant", constant_values=0) if padded: # Pad to integer number of windowed segments # I.e make x.shape[-1] = frame_length + (nseg-1)*nstep, # with integer nseg nadd = (-(x.shape[-1] - frame_length) % frame_shift) % frame_length pad_shape = [(0, 0) for _ in range(x.ndim - 1)] + [(0, nadd)] x = np.pad(x, pad_shape, mode="constant", constant_values=0) # Created strided array of data segments if frame_length == 1 and frame_length == frame_shift: result = x[..., None] else: shape = x.shape[:-1] + ( (x.shape[-1] - frame_length) // frame_shift + 1, frame_length, ) strides = x.strides[:-1] + (frame_shift * x.strides[-1], x.strides[-1]) result = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) return result
[docs]def detect_non_silence( x: np.ndarray, threshold: float = 0.01, frame_length: int = 1024, frame_shift: int = 512, window: str = "boxcar", ) -> np.ndarray: """Power based voice activity detection. Args: x: (Channel, Time) >>> x = np.random.randn(1000) >>> detect = detect_non_silence(x) >>> assert x.shape == detect.shape >>> assert detect.dtype == np.bool """ if x.shape[-1] < frame_length: return np.full(x.shape, fill_value=True, dtype=np.bool) if x.dtype.kind == "i": x = x.astype(np.float64) # framed_w: (C, T, F) framed_w = framing( x, frame_length=frame_length, frame_shift=frame_shift, centered=False, padded=True, ) framed_w *= scipy.signal.get_window(window, frame_length).astype(framed_w.dtype) # power: (C, T) power = (framed_w**2).mean(axis=-1) # mean_power: (C, 1) mean_power = np.mean(power, axis=-1, keepdims=True) if np.all(mean_power == 0): return np.full(x.shape, fill_value=True, dtype=np.bool) # detect_frames: (C, T) detect_frames = power / mean_power > threshold # detects: (C, T, F) detects = np.broadcast_to( detect_frames[..., None], detect_frames.shape + (frame_shift,) ) # detects: (C, TF) detects = detects.reshape(*detect_frames.shape[:-1], -1) # detects: (C, TF) return np.pad( detects, [(0, 0)] * (x.ndim - 1) + [(0, x.shape[-1] - detects.shape[-1])], mode="edge", )
[docs]class CommonPreprocessor(AbsPreprocessor): def __init__( self, train: bool, token_type: str = None, token_list: Union[Path, str, Iterable[str]] = None, bpemodel: Union[Path, str, Iterable[str]] = None, text_cleaner: Collection[str] = None, g2p_type: str = None, unk_symbol: str = "<unk>", space_symbol: str = "<space>", non_linguistic_symbols: Union[Path, str, Iterable[str]] = None, delimiter: str = None, rir_scp: str = None, rir_apply_prob: float = 1.0, noise_scp: str = None, noise_apply_prob: float = 1.0, noise_db_range: str = "3_10", speech_volume_normalize: float = None, speech_name: str = "speech", text_name: str = "text", ): super().__init__(train) self.train = train self.speech_name = speech_name self.text_name = text_name self.speech_volume_normalize = speech_volume_normalize self.rir_apply_prob = rir_apply_prob self.noise_apply_prob = noise_apply_prob if token_type is not None: if token_list is None: raise ValueError("token_list is required if token_type is not None") self.text_cleaner = TextCleaner(text_cleaner) self.tokenizer = build_tokenizer( token_type=token_type, bpemodel=bpemodel, delimiter=delimiter, space_symbol=space_symbol, non_linguistic_symbols=non_linguistic_symbols, g2p_type=g2p_type, ) self.token_id_converter = TokenIDConverter( token_list=token_list, unk_symbol=unk_symbol, ) else: self.text_cleaner = None self.tokenizer = None self.token_id_converter = None if train and rir_scp is not None: self.rirs = [] with open(rir_scp, "r", encoding="utf-8") as f: for line in f: sps = line.strip().split(None, 1) if len(sps) == 1: self.rirs.append(sps[0]) else: self.rirs.append(sps[1]) else: self.rirs = None if train and noise_scp is not None: self.noises = [] with open(noise_scp, "r", encoding="utf-8") as f: for line in f: sps = line.strip().split(None, 1) if len(sps) == 1: self.noises.append(sps[0]) else: self.noises.append(sps[1]) sps = noise_db_range.split("_") if len(sps) == 1: self.noise_db_low, self.noise_db_high = float(sps[0]) elif len(sps) == 2: self.noise_db_low, self.noise_db_high = float(sps[0]), float(sps[1]) else: raise ValueError( "Format error: '{noise_db_range}' e.g. -3_4 -> [-3db,4db]" ) else: self.noises = None def _speech_process( self, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, Union[str, np.ndarray]]: assert check_argument_types() if self.speech_name in data: if self.train and (self.rirs is not None or self.noises is not None): speech = data[self.speech_name] nsamples = len(speech) # speech: (Nmic, Time) if speech.ndim == 1: speech = speech[None, :] else: speech = speech.T # Calc power on non shlence region power = (speech[detect_non_silence(speech)] ** 2).mean() # 1. Convolve RIR if self.rirs is not None and self.rir_apply_prob >= np.random.random(): rir_path = np.random.choice(self.rirs) if rir_path is not None: rir, _ = soundfile.read( rir_path, dtype=np.float64, always_2d=True ) # rir: (Nmic, Time) rir = rir.T # speech: (Nmic, Time) # Note that this operation doesn't change the signal length speech = scipy.signal.convolve(speech, rir, mode="full")[ :, : speech.shape[1] ] # Reverse mean power to the original power power2 = (speech[detect_non_silence(speech)] ** 2).mean() speech = np.sqrt(power / max(power2, 1e-10)) * speech # 2. Add Noise if ( self.noises is not None and self.noise_apply_prob >= np.random.random() ): noise_path = np.random.choice(self.noises) if noise_path is not None: noise_db = np.random.uniform( self.noise_db_low, self.noise_db_high ) with soundfile.SoundFile(noise_path) as f: if f.frames == nsamples: noise = f.read(dtype=np.float64, always_2d=True) elif f.frames < nsamples: offset = np.random.randint(0, nsamples - f.frames) # noise: (Time, Nmic) noise = f.read(dtype=np.float64, always_2d=True) # Repeat noise noise = np.pad( noise, [(offset, nsamples - f.frames - offset), (0, 0)], mode="wrap", ) else: offset = np.random.randint(0, f.frames - nsamples) f.seek(offset) # noise: (Time, Nmic) noise = f.read( nsamples, dtype=np.float64, always_2d=True ) if len(noise) != nsamples: raise RuntimeError(f"Something wrong: {noise_path}") # noise: (Nmic, Time) noise = noise.T noise_power = (noise**2).mean() scale = ( 10 ** (-noise_db / 20) * np.sqrt(power) / np.sqrt(max(noise_power, 1e-10)) ) speech = speech + scale * noise speech = speech.T ma = np.max(np.abs(speech)) if ma > 1.0: speech /= ma data[self.speech_name] = speech if self.speech_volume_normalize is not None: speech = data[self.speech_name] ma = np.max(np.abs(speech)) data[self.speech_name] = speech * self.speech_volume_normalize / ma assert check_return_type(data) return data def _text_process( self, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, np.ndarray]: if self.text_name in data and self.tokenizer is not None: text = data[self.text_name] text = self.text_cleaner(text) tokens = self.tokenizer.text2tokens(text) text_ints = self.token_id_converter.tokens2ids(tokens) data[self.text_name] = np.array(text_ints, dtype=np.int64) assert check_return_type(data) return data def __call__( self, uid: str, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, np.ndarray]: assert check_argument_types() data = self._speech_process(data) data = self._text_process(data) return data
[docs]class CommonPreprocessor_multi(AbsPreprocessor): def __init__( self, train: bool, token_type: str = None, token_list: Union[Path, str, Iterable[str]] = None, bpemodel: Union[Path, str, Iterable[str]] = None, text_cleaner: Collection[str] = None, g2p_type: str = None, unk_symbol: str = "<unk>", space_symbol: str = "<space>", non_linguistic_symbols: Union[Path, str, Iterable[str]] = None, delimiter: str = None, speech_name: str = "speech", text_name: List[str] = ["text"], ): super().__init__(train) self.train = train self.speech_name = speech_name self.text_name = text_name if token_type is not None: if token_list is None: raise ValueError("token_list is required if token_type is not None") self.text_cleaner = TextCleaner(text_cleaner) self.tokenizer = build_tokenizer( token_type=token_type, bpemodel=bpemodel, delimiter=delimiter, space_symbol=space_symbol, non_linguistic_symbols=non_linguistic_symbols, g2p_type=g2p_type, ) self.token_id_converter = TokenIDConverter( token_list=token_list, unk_symbol=unk_symbol, ) else: self.text_cleaner = None self.tokenizer = None self.token_id_converter = None def _text_process( self, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, np.ndarray]: for text_n in self.text_name: if text_n in data and self.tokenizer is not None: text = data[text_n] text = self.text_cleaner(text) tokens = self.tokenizer.text2tokens(text) text_ints = self.token_id_converter.tokens2ids(tokens) data[text_n] = np.array(text_ints, dtype=np.int64) assert check_return_type(data) return data def __call__( self, uid: str, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, np.ndarray]: assert check_argument_types() if self.speech_name in data: # Nothing now: candidates: # - STFT # - Fbank # - CMVN # - Data augmentation pass data = self._text_process(data) return data
[docs]class MutliTokenizerCommonPreprocessor(CommonPreprocessor): def __init__( self, train: bool, token_type: List[str] = [None], token_list: List[Union[Path, str, Iterable[str]]] = [None], bpemodel: List[Union[Path, str, Iterable[str]]] = [None], text_cleaner: Collection[str] = None, g2p_type: str = None, unk_symbol: str = "<unk>", space_symbol: str = "<space>", non_linguistic_symbols: Union[Path, str, Iterable[str]] = None, delimiter: str = None, rir_scp: str = None, rir_apply_prob: float = 1.0, noise_scp: str = None, noise_apply_prob: float = 1.0, noise_db_range: str = "3_10", speech_volume_normalize: float = None, speech_name: str = "speech", text_name: List[str] = ["text"], ): # TODO(jiatong): sync with Kamo and Jing on interface for preprocessor super().__init__( train=train, token_type=token_type[0], token_list=token_list[0], bpemodel=bpemodel[0], text_cleaner=text_cleaner, g2p_type=g2p_type, unk_symbol=unk_symbol, space_symbol=space_symbol, non_linguistic_symbols=non_linguistic_symbols, delimiter=delimiter, speech_name=speech_name, text_name=text_name[0], rir_scp=rir_scp, rir_apply_prob=rir_apply_prob, noise_scp=noise_scp, noise_apply_prob=noise_apply_prob, noise_db_range=noise_db_range, speech_volume_normalize=speech_volume_normalize, ) assert ( len(token_type) == len(token_list) == len(bpemodel) == len(text_name) ), "token_type, token_list, bpemodel, or processing text_name mismatched" self.num_tokenizer = len(token_type) self.tokenizer = [] self.token_id_converter = [] for i in range(self.num_tokenizer): if token_type[i] is not None: if token_list[i] is None: raise ValueError("token_list is required if token_type is not None") self.tokenizer.append( build_tokenizer( token_type=token_type[i], bpemodel=bpemodel[i], delimiter=delimiter, space_symbol=space_symbol, non_linguistic_symbols=non_linguistic_symbols, g2p_type=g2p_type, ) ) self.token_id_converter.append( TokenIDConverter( token_list=token_list[i], unk_symbol=unk_symbol, ) ) else: self.tokenizer.append(None) self.token_id_converter.append(None) self.text_cleaner = TextCleaner(text_cleaner) self.text_name = text_name # override the text_name from CommonPreprocessor def _text_process( self, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, np.ndarray]: for i in range(self.num_tokenizer): text_name = self.text_name[i] if text_name in data and self.tokenizer[i] is not None: text = data[text_name] text = self.text_cleaner(text) tokens = self.tokenizer[i].text2tokens(text) text_ints = self.token_id_converter[i].tokens2ids(tokens) data[text_name] = np.array(text_ints, dtype=np.int64) assert check_return_type(data) return data