Source code for espnet2.st.espnet_model

from contextlib import contextmanager
from distutils.version import LooseVersion
import logging
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union

import torch
from typeguard import check_argument_types

from espnet.nets.e2e_asr_common import ErrorCalculator as ASRErrorCalculator
from espnet.nets.e2e_mt_common import ErrorCalculator as MTErrorCalculator
from espnet.nets.pytorch_backend.nets_utils import th_accuracy
from espnet.nets.pytorch_backend.transformer.add_sos_eos import add_sos_eos
from espnet.nets.pytorch_backend.transformer.label_smoothing_loss import (
    LabelSmoothingLoss,  # noqa: H301
)
from espnet2.asr.ctc import CTC
from espnet2.asr.decoder.abs_decoder import AbsDecoder
from espnet2.asr.encoder.abs_encoder import AbsEncoder
from espnet2.asr.frontend.abs_frontend import AbsFrontend
from espnet2.asr.postencoder.abs_postencoder import AbsPostEncoder
from espnet2.asr.preencoder.abs_preencoder import AbsPreEncoder
from espnet2.asr.specaug.abs_specaug import AbsSpecAug
from espnet2.layers.abs_normalize import AbsNormalize
from espnet2.torch_utils.device_funcs import force_gatherable
from espnet2.train.abs_espnet_model import AbsESPnetModel

if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


[docs]class ESPnetSTModel(AbsESPnetModel): """CTC-attention hybrid Encoder-Decoder model""" def __init__( self, vocab_size: int, token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[AbsFrontend], specaug: Optional[AbsSpecAug], normalize: Optional[AbsNormalize], preencoder: Optional[AbsPreEncoder], encoder: AbsEncoder, postencoder: Optional[AbsPostEncoder], decoder: AbsDecoder, extra_asr_decoder: Optional[AbsDecoder], extra_mt_decoder: Optional[AbsDecoder], ctc: CTC, src_vocab_size: int = 0, src_token_list: Union[Tuple[str, ...], List[str]] = [], asr_weight: float = 0.0, mt_weight: float = 0.0, mtlalpha: float = 0.0, ignore_id: int = -1, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, report_bleu: bool = True, sym_space: str = "<space>", sym_blank: str = "<blank>", extract_feats_in_collect_stats: bool = True, ): assert check_argument_types() assert 0.0 <= asr_weight < 1.0, "asr_weight should be [0.0, 1.0)" assert 0.0 <= mt_weight < 1.0, "mt_weight should be [0.0, 1.0)" assert 0.0 <= mtlalpha <= 1.0, "mtlalpha should be [0.0, 1.0]" super().__init__() # note that eos is the same as sos (equivalent ID) self.sos = vocab_size - 1 self.eos = vocab_size - 1 self.vocab_size = vocab_size self.src_vocab_size = src_vocab_size self.ignore_id = ignore_id self.asr_weight = asr_weight self.mt_weight = mt_weight self.mtlalpha = mtlalpha self.token_list = token_list.copy() self.frontend = frontend self.specaug = specaug self.normalize = normalize self.preencoder = preencoder self.postencoder = postencoder self.encoder = encoder self.decoder = ( decoder # TODO(jiatong): directly implement multi-decoder structure at here ) self.criterion_st = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) self.criterion_asr = LabelSmoothingLoss( size=src_vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) # submodule for ASR task if self.asr_weight > 0: assert ( src_token_list is not None ), "Missing src_token_list, cannot add asr module to st model" if self.mtlalpha > 0.0: self.ctc = ctc if self.mtlalpha < 1.0: self.extra_asr_decoder = extra_asr_decoder elif extra_asr_decoder is not None: logging.warning( "Not using extra_asr_decoder because " "mtlalpha is set as {} (== 1.0)".format(mtlalpha), ) # submodule for MT task if self.mt_weight > 0: self.extra_mt_decoder = extra_mt_decoder elif extra_mt_decoder is not None: logging.warning( "Not using extra_mt_decoder because " "mt_weight is set as {} (== 0)".format(mt_weight), ) # MT error calculator if report_bleu: self.mt_error_calculator = MTErrorCalculator( token_list, sym_space, sym_blank, report_bleu ) else: self.mt_error_calculator = None # ASR error calculator if report_cer or report_wer: assert ( src_token_list is not None ), "Missing src_token_list, cannot add asr module to st model" self.asr_error_calculator = ASRErrorCalculator( src_token_list, sym_space, sym_blank, report_cer, report_wer ) else: self.asr_error_calculator = None self.extract_feats_in_collect_stats = extract_feats_in_collect_stats # TODO(jiatong): add multilingual related functions
[docs] def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, src_text: Optional[torch.Tensor], src_text_lengths: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch,) text: (Batch, Length) text_lengths: (Batch,) src_text: (Batch, length) src_text_lengths: (Batch,) """ assert text_lengths.dim() == 1, text_lengths.shape # Check that batch_size is unified assert ( speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0] ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) # additional checks with valid src_text if src_text is not None: assert src_text_lengths.dim() == 1, src_text_lengths.shape assert text.shape[0] == src_text.shape[0] == src_text_lengths.shape[0], ( text.shape, src_text.shape, src_text_lengths.shape, ) batch_size = speech.shape[0] # for data-parallel text = text[:, : text_lengths.max()] if src_text is not None: src_text = src_text[:, : src_text_lengths.max()] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) # 2a. Attention-decoder branch (ST) loss_st_att, acc_st_att, bleu_st_att = self._calc_mt_att_loss( encoder_out, encoder_out_lens, text, text_lengths, st=True ) # 2b. CTC branch if self.asr_weight > 0: assert src_text is not None, "missing source text for asr sub-task of ST" if self.asr_weight > 0 and self.mtlalpha > 0: loss_asr_ctc, cer_asr_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, src_text, src_text_lengths ) else: loss_asr_ctc, cer_asr_ctc = 0, None # 2c. Attention-decoder branch (extra ASR) if self.asr_weight > 0 and self.mtlalpha < 1.0: ( loss_asr_att, acc_asr_att, cer_asr_att, wer_asr_att, ) = self._calc_asr_att_loss( encoder_out, encoder_out_lens, src_text, src_text_lengths ) else: loss_asr_att, acc_asr_att, cer_asr_att, wer_asr_att = 0, None, None, None # 2d. Attention-decoder branch (extra MT) if self.mt_weight > 0: loss_mt_att, acc_mt_att = self._calc_mt_att_loss( encoder_out, encoder_out_lens, text, text_lengths, st=False ) else: loss_mt_att, acc_mt_att = 0, None # 3. Loss computation asr_ctc_weight = self.mtlalpha loss_st = loss_st_att if asr_ctc_weight == 1.0: loss_asr = loss_asr_ctc elif asr_ctc_weight == 0.0: loss_asr = loss_asr_att else: loss_asr = ( asr_ctc_weight * loss_asr_ctc + (1 - asr_ctc_weight) * loss_asr_att ) loss_mt = self.mt_weight * loss_mt_att loss = ( (1 - self.asr_weight - self.mt_weight) * loss_st + self.asr_weight * loss_asr + self.mt_weight * loss_mt ) stats = dict( loss=loss.detach(), loss_asr=loss_asr.detach() if type(loss_asr) is not float else loss_asr, loss_mt=loss_mt.detach() if type(loss_mt) is not float else loss_mt, loss_st=loss_st.detach(), acc_asr=acc_asr_att, acc_mt=acc_mt_att, acc=acc_st_att, cer_ctc=cer_asr_ctc, cer=cer_asr_att, wer=wer_asr_att, bleu=bleu_st_att, ) # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight
[docs] def collect_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, src_text: Optional[torch.Tensor], src_text_lengths: Optional[torch.Tensor], ) -> Dict[str, torch.Tensor]: if self.extract_feats_in_collect_stats: feats, feats_lengths = self._extract_feats(speech, speech_lengths) else: # Generate dummy stats if extract_feats_in_collect_stats is False logging.warning( "Generating dummy stats for feats and feats_lengths, " "because encoder_conf.extract_feats_in_collect_stats is " f"{self.extract_feats_in_collect_stats}" ) feats, feats_lengths = speech, speech_lengths return {"feats": feats, "feats_lengths": feats_lengths}
[docs] def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by st_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) """ with autocast(False): # 1. Extract feats feats, feats_lengths = self._extract_feats(speech, speech_lengths) # 2. Data augmentation if self.specaug is not None and self.training: feats, feats_lengths = self.specaug(feats, feats_lengths) # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: feats, feats_lengths = self.normalize(feats, feats_lengths) # Pre-encoder, e.g. used for raw input data if self.preencoder is not None: feats, feats_lengths = self.preencoder(feats, feats_lengths) # 4. Forward encoder # feats: (Batch, Length, Dim) # -> encoder_out: (Batch, Length2, Dim2) encoder_out, encoder_out_lens, _ = self.encoder(feats, feats_lengths) # Post-encoder, e.g. NLU if self.postencoder is not None: encoder_out, encoder_out_lens = self.postencoder( encoder_out, encoder_out_lens ) assert encoder_out.size(0) == speech.size(0), ( encoder_out.size(), speech.size(0), ) assert encoder_out.size(1) <= encoder_out_lens.max(), ( encoder_out.size(), encoder_out_lens.max(), ) return encoder_out, encoder_out_lens
def _extract_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: assert speech_lengths.dim() == 1, speech_lengths.shape # for data-parallel speech = speech[:, : speech_lengths.max()] if self.frontend is not None: # Frontend # e.g. STFT and Feature extract # data_loader may send time-domain signal in this case # speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim) feats, feats_lengths = self.frontend(speech, speech_lengths) else: # No frontend and no feature extract feats, feats_lengths = speech, speech_lengths return feats, feats_lengths def _calc_mt_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, st: bool = True, ): ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 # 1. Forward decoder if st: decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens ) else: decoder_out, _ = self.extra_mt_decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens ) # 2. Compute attention loss loss_att = self.criterion_st(decoder_out, ys_out_pad) acc_att = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_out_pad, ignore_label=self.ignore_id, ) # Compute cer/wer using attention-decoder if self.training or self.mt_error_calculator is None: bleu_att = None else: ys_hat = decoder_out.argmax(dim=-1) bleu_att = self.mt_error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, bleu_att def _calc_asr_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 # 1. Forward decoder decoder_out, _ = self.extra_asr_decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens ) # 2. Compute attention loss loss_att = self.criterion_asr(decoder_out, ys_out_pad) acc_att = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_out_pad, ignore_label=self.ignore_id, ) # Compute cer/wer using attention-decoder if self.training or self.asr_error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out.argmax(dim=-1) cer_att, wer_att = self.asr_error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att def _calc_ctc_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): # Calc CTC loss loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) # Calc CER using CTC cer_ctc = None if not self.training and self.asr_error_calculator is not None: ys_hat = self.ctc.argmax(encoder_out).data cer_ctc = self.asr_error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) return loss_ctc, cer_ctc