Source code for espnet2.enh.encoder.stft_encoder

from distutils.version import LooseVersion
import torch
from torch_complex.tensor import ComplexTensor

from espnet2.enh.encoder.abs_encoder import AbsEncoder
from espnet2.layers.stft import Stft

is_torch_1_9_plus = LooseVersion(torch.__version__) >= LooseVersion("1.9.0")


[docs]class STFTEncoder(AbsEncoder): """STFT encoder for speech enhancement and separation""" def __init__( self, n_fft: int = 512, win_length: int = None, hop_length: int = 128, window="hann", center: bool = True, normalized: bool = False, onesided: bool = True, use_builtin_complex: bool = True, ): super().__init__() self.stft = Stft( n_fft=n_fft, win_length=win_length, hop_length=hop_length, window=window, center=center, normalized=normalized, onesided=onesided, ) self._output_dim = n_fft // 2 + 1 if onesided else n_fft self.use_builtin_complex = use_builtin_complex @property def output_dim(self) -> int: return self._output_dim
[docs] def forward(self, input: torch.Tensor, ilens: torch.Tensor): """Forward. Args: input (torch.Tensor): mixed speech [Batch, sample] ilens (torch.Tensor): input lengths [Batch] """ spectrum, flens = self.stft(input, ilens) if is_torch_1_9_plus and self.use_builtin_complex: spectrum = torch.complex(spectrum[..., 0], spectrum[..., 1]) else: spectrum = ComplexTensor(spectrum[..., 0], spectrum[..., 1]) return spectrum, flens