Source code for espnet2.bin.diar_inference

#!/usr/bin/env python3

import argparse
import logging
from pathlib import Path
import sys
from typing import Any
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union

import numpy as np
import torch
from tqdm import trange
from typeguard import check_argument_types

from espnet.utils.cli_utils import get_commandline_args
from espnet2.fileio.npy_scp import NpyScpWriter
from espnet2.tasks.diar import DiarizationTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import humanfriendly_parse_size_or_none
from espnet2.utils.types import int_or_none
from espnet2.utils.types import str2bool
from espnet2.utils.types import str2triple_str
from espnet2.utils.types import str_or_none


[docs]class DiarizeSpeech: """DiarizeSpeech class Examples: >>> import soundfile >>> diarization = DiarizeSpeech("diar_config.yaml", "diar.pth") >>> audio, rate = soundfile.read("speech.wav") >>> diarization(audio) [(spk_id, start, end), (spk_id2, start2, end2)] """ def __init__( self, train_config: Union[Path, str] = None, model_file: Union[Path, str] = None, segment_size: Optional[float] = None, normalize_segment_scale: bool = False, show_progressbar: bool = False, num_spk: Optional[int] = None, device: str = "cpu", dtype: str = "float32", ): assert check_argument_types() # 1. Build Diar model diar_model, diar_train_args = DiarizationTask.build_model_from_file( train_config, model_file, device ) diar_model.to(dtype=getattr(torch, dtype)).eval() self.device = device self.dtype = dtype self.diar_train_args = diar_train_args self.diar_model = diar_model # only used when processing long speech, i.e. # segment_size is not None and hop_size is not None self.segment_size = segment_size self.normalize_segment_scale = normalize_segment_scale self.show_progressbar = show_progressbar # not specifying "num_spk" in inference config file # will enable speaker number prediction during inference self.num_spk = num_spk self.segmenting = segment_size is not None if self.segmenting: logging.info("Perform segment-wise speaker diarization") logging.info("Segment length = {} sec".format(segment_size)) else: logging.info("Perform direct speaker diarization on the input") @torch.no_grad() def __call__( self, speech: Union[torch.Tensor, np.ndarray], fs: int = 8000 ) -> List[torch.Tensor]: """Inference Args: speech: Input speech data (Batch, Nsamples [, Channels]) fs: sample rate Returns: [speaker_info1, speaker_info2, ...] """ assert check_argument_types() # Input as audio signal if isinstance(speech, np.ndarray): speech = torch.as_tensor(speech) assert speech.dim() > 1, speech.size() batch_size = speech.size(0) speech = speech.to(getattr(torch, self.dtype)) # lengths: (B,) lengths = speech.new_full( [batch_size], dtype=torch.long, fill_value=speech.size(1) ) # a. To device speech = to_device(speech, device=self.device) lengths = to_device(lengths, device=self.device) if self.segmenting and lengths[0] > self.segment_size * fs: # Segment-wise speaker diarization num_segments = int(np.ceil(speech.size(1) / (self.segment_size * fs))) t = T = int(self.segment_size * fs) pad_shape = speech[:, :T].shape diarized_wavs = [] range_ = trange if self.show_progressbar else range for i in range_(num_segments): st = int(i * self.segment_size * fs) en = st + T if en >= lengths[0]: # en - st < T (last segment) en = lengths[0] speech_seg = speech.new_zeros(pad_shape) t = en - st speech_seg[:, :t] = speech[:, st:en] else: t = T speech_seg = speech[:, st:en] # B x T [x C] lengths_seg = speech.new_full( [batch_size], dtype=torch.long, fill_value=T ) # b. Diarization Forward encoder_out, encoder_out_lens = self.diar_model.encode( speech_seg, lengths_seg ) # SA-EEND if self.diar_model.attractor is None: assert ( self.num_spk is not None ), 'Argument "num_spk" must be specified' spk_prediction = self.diar_model.decoder( encoder_out, encoder_out_lens ) # EEND-EDA else: # if num_spk is specified, use that number if self.num_spk is not None: attractor, att_prob = self.diar_model.attractor( encoder_out, encoder_out_lens, torch.zeros( encoder_out.size(0), self.num_spk + 1, encoder_out.size(2), ), ) spk_prediction = torch.bmm( encoder_out, attractor[:, : self.num_spk, :].permute(0, 2, 1), ) # else find the first att_prob[i] < 0 else: max_num_spk = 15 # upper bound number for estimation attractor, att_prob = self.diar_model.attractor( encoder_out, encoder_out_lens, torch.zeros( encoder_out.size(0), max_num_spk + 1, encoder_out.size(2), ), ) att_prob = torch.squeeze(att_prob) for pred_num_spk in range(len(att_prob)): if att_prob[pred_num_spk].item() < 0: break spk_prediction = torch.bmm( encoder_out, attractor[:, :pred_num_spk, :].permute(0, 2, 1) ) # List[torch.Tensor(B, T, num_spks)] diarized_wavs.append(spk_prediction) # Determine maximum estimated number of speakers among the segments max_len = max([x.size(2) for x in diarized_wavs]) # pad tensors in diarized_wavs with "float('-inf')" to have same size diarized_wavs = [ torch.nn.functional.pad( x, (0, max_len - x.size(2)), "constant", float("-inf") ) for x in diarized_wavs ] spk_prediction = torch.cat(diarized_wavs, dim=1) else: # b. Diarization Forward encoder_out, encoder_out_lens = self.diar_model.encode(speech, lengths) # SA-EEND if self.diar_model.attractor is None: assert self.num_spk is not None, 'Argument "num_spk" must be specified' spk_prediction = self.diar_model.decoder(encoder_out, encoder_out_lens) # EEND-EDA else: # if num_spk is specified, use that number if self.num_spk is not None: attractor, att_prob = self.diar_model.attractor( encoder_out, encoder_out_lens, torch.zeros( encoder_out.size(0), self.num_spk + 1, encoder_out.size(2) ), ) spk_prediction = torch.bmm( encoder_out, attractor[:, : self.num_spk, :].permute(0, 2, 1) ) # else find the first att_prob[i] < 0 else: max_num_spk = 15 # upper bound number for estimation attractor, att_prob = self.diar_model.attractor( encoder_out, encoder_out_lens, torch.zeros( encoder_out.size(0), max_num_spk + 1, encoder_out.size(2) ), ) att_prob = torch.squeeze(att_prob) for pred_num_spk in range(len(att_prob)): if att_prob[pred_num_spk].item() < 0: break spk_prediction = torch.bmm( encoder_out, attractor[:, :pred_num_spk, :].permute(0, 2, 1) ) if self.num_spk is not None: assert spk_prediction.size(2) == self.num_spk, ( spk_prediction.size(2), self.num_spk, ) assert spk_prediction.size(0) == batch_size, ( spk_prediction.size(0), batch_size, ) spk_prediction = spk_prediction.cpu().numpy() spk_prediction = 1 / (1 + np.exp(-spk_prediction)) return spk_prediction
[docs] @staticmethod def from_pretrained( model_tag: Optional[str] = None, **kwargs: Optional[Any], ): """Build DiarizeSpeech instance from the pretrained model. Args: model_tag (Optional[str]): Model tag of the pretrained models. Currently, the tags of espnet_model_zoo are supported. Returns: DiarizeSpeech: DiarizeSpeech instance. """ if model_tag is not None: try: from espnet_model_zoo.downloader import ModelDownloader except ImportError: logging.error( "`espnet_model_zoo` is not installed. " "Please install via `pip install -U espnet_model_zoo`." ) raise d = ModelDownloader() kwargs.update(**d.download_and_unpack(model_tag)) return DiarizeSpeech(**kwargs)
[docs]def inference( output_dir: str, batch_size: int, dtype: str, fs: int, ngpu: int, seed: int, num_workers: int, log_level: Union[int, str], data_path_and_name_and_type: Sequence[Tuple[str, str, str]], key_file: Optional[str], train_config: Optional[str], model_file: Optional[str], model_tag: Optional[str], allow_variable_data_keys: bool, segment_size: Optional[float], show_progressbar: bool, num_spk: Optional[int], ): assert check_argument_types() if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") if ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) if ngpu >= 1: device = "cuda" else: device = "cpu" # 1. Set random-seed set_all_random_seed(seed) # 2. Build separate_speech diarize_speech_kwargs = dict( train_config=train_config, model_file=model_file, segment_size=segment_size, show_progressbar=show_progressbar, num_spk=num_spk, device=device, dtype=dtype, ) diarize_speech = DiarizeSpeech.from_pretrained( model_tag=model_tag, **diarize_speech_kwargs, ) # 3. Build data-iterator loader = DiarizationTask.build_streaming_iterator( data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, preprocess_fn=DiarizationTask.build_preprocess_fn( diarize_speech.diar_train_args, False ), collate_fn=DiarizationTask.build_collate_fn( diarize_speech.diar_train_args, False ), allow_variable_data_keys=allow_variable_data_keys, inference=True, ) # 4. Start for-loop writer = NpyScpWriter(f"{output_dir}/predictions", f"{output_dir}/diarize.scp") for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")} spk_predictions = diarize_speech(**batch) for b in range(batch_size): writer[keys[b]] = spk_predictions[b] writer.close()
[docs]def get_parser(): parser = config_argparse.ArgumentParser( description="Speaker Diarization inference", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=True) parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--fs", type=humanfriendly_parse_size_or_none, default=8000, help="Sampling rate", ) parser.add_argument( "--num_workers", type=int, default=1, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=True, action="append", ) group.add_argument("--key_file", type=str_or_none) group.add_argument("--allow_variable_data_keys", type=str2bool, default=False) group = parser.add_argument_group("The model configuration related") group.add_argument( "--train_config", type=str, help="Diarization training configuration", ) group.add_argument( "--model_file", type=str, help="Diarization model parameter file", ) group.add_argument( "--model_tag", type=str, help="Pretrained model tag. If specify this option, train_config and " "model_file will be overwritten", ) group = parser.add_argument_group("Data loading related") group.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) group = parser.add_argument_group("Diarize speech related") group.add_argument( "--segment_size", type=float, default=None, help="Segment length in seconds for segment-wise speaker diarization", ) group.add_argument( "--show_progressbar", type=str2bool, default=False, help="Whether to show a progress bar when performing segment-wise speaker " "diarization", ) group.add_argument( "--num_spk", type=int_or_none, default=None, help="Predetermined number of speakers for inference", ) return parser
[docs]def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) inference(**kwargs)
if __name__ == "__main__": main()