Source code for espnet2.asr.espnet_model

from contextlib import contextmanager
from distutils.version import LooseVersion
import logging
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union

import torch
from typeguard import check_argument_types

from espnet.nets.e2e_asr_common import ErrorCalculator
from espnet.nets.pytorch_backend.nets_utils import th_accuracy
from espnet.nets.pytorch_backend.transformer.add_sos_eos import add_sos_eos
from espnet.nets.pytorch_backend.transformer.label_smoothing_loss import (
    LabelSmoothingLoss,  # noqa: H301
)
from espnet2.asr.ctc import CTC
from espnet2.asr.decoder.abs_decoder import AbsDecoder
from espnet2.asr.encoder.abs_encoder import AbsEncoder
from espnet2.asr.frontend.abs_frontend import AbsFrontend
from espnet2.asr.postencoder.abs_postencoder import AbsPostEncoder
from espnet2.asr.preencoder.abs_preencoder import AbsPreEncoder
from espnet2.asr.specaug.abs_specaug import AbsSpecAug
from espnet2.asr.transducer.error_calculator import ErrorCalculatorTransducer
from espnet2.asr.transducer.utils import get_transducer_task_io
from espnet2.layers.abs_normalize import AbsNormalize
from espnet2.torch_utils.device_funcs import force_gatherable
from espnet2.train.abs_espnet_model import AbsESPnetModel

if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


[docs]class ESPnetASRModel(AbsESPnetModel): """CTC-attention hybrid Encoder-Decoder model""" def __init__( self, vocab_size: int, token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[AbsFrontend], specaug: Optional[AbsSpecAug], normalize: Optional[AbsNormalize], preencoder: Optional[AbsPreEncoder], encoder: AbsEncoder, postencoder: Optional[AbsPostEncoder], decoder: AbsDecoder, ctc: CTC, joint_network: Optional[torch.nn.Module], ctc_weight: float = 0.5, interctc_weight: float = 0.0, ignore_id: int = -1, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, sym_space: str = "<space>", sym_blank: str = "<blank>", extract_feats_in_collect_stats: bool = True, ): assert check_argument_types() assert 0.0 <= ctc_weight <= 1.0, ctc_weight assert 0.0 <= interctc_weight < 1.0, interctc_weight super().__init__() # note that eos is the same as sos (equivalent ID) self.blank_id = 0 self.sos = vocab_size - 1 self.eos = vocab_size - 1 self.vocab_size = vocab_size self.ignore_id = ignore_id self.ctc_weight = ctc_weight self.interctc_weight = interctc_weight self.token_list = token_list.copy() self.frontend = frontend self.specaug = specaug self.normalize = normalize self.preencoder = preencoder self.postencoder = postencoder self.encoder = encoder if not hasattr(self.encoder, "interctc_use_conditioning"): self.encoder.interctc_use_conditioning = False if self.encoder.interctc_use_conditioning: self.encoder.conditioning_layer = torch.nn.Linear( vocab_size, self.encoder.output_size() ) self.use_transducer_decoder = joint_network is not None self.error_calculator = None if self.use_transducer_decoder: from warprnnt_pytorch import RNNTLoss self.decoder = decoder self.joint_network = joint_network self.criterion_transducer = RNNTLoss( blank=self.blank_id, fastemit_lambda=0.0, ) if report_cer or report_wer: self.error_calculator_trans = ErrorCalculatorTransducer( decoder, joint_network, token_list, sym_space, sym_blank, report_cer=report_cer, report_wer=report_wer, ) else: self.error_calculator_trans = None if self.ctc_weight != 0: self.error_calculator = ErrorCalculator( token_list, sym_space, sym_blank, report_cer, report_wer ) else: # we set self.decoder = None in the CTC mode since # self.decoder parameters were never used and PyTorch complained # and threw an Exception in the multi-GPU experiment. # thanks Jeff Farris for pointing out the issue. if ctc_weight == 1.0: self.decoder = None else: self.decoder = decoder self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) if report_cer or report_wer: self.error_calculator = ErrorCalculator( token_list, sym_space, sym_blank, report_cer, report_wer ) if ctc_weight == 0.0: self.ctc = None else: self.ctc = ctc self.extract_feats_in_collect_stats = extract_feats_in_collect_stats
[docs] def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ assert text_lengths.dim() == 1, text_lengths.shape # Check that batch_size is unified assert ( speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0] ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) batch_size = speech.shape[0] # for data-parallel text = text[:, : text_lengths.max()] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] loss_att, acc_att, cer_att, wer_att = None, None, None, None loss_ctc, cer_ctc = None, None loss_transducer, cer_transducer, wer_transducer = None, None, None stats = dict() # 1. CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # Intermediate CTC (optional) loss_interctc = 0.0 if self.interctc_weight != 0.0 and intermediate_outs is not None: for layer_idx, intermediate_out in intermediate_outs: # we assume intermediate_out has the same length & padding # as those of encoder_out loss_ic, cer_ic = self._calc_ctc_loss( intermediate_out, encoder_out_lens, text, text_lengths ) loss_interctc = loss_interctc + loss_ic # Collect Intermedaite CTC stats stats["loss_interctc_layer{}".format(layer_idx)] = ( loss_ic.detach() if loss_ic is not None else None ) stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic loss_interctc = loss_interctc / len(intermediate_outs) # calculate whole encoder loss loss_ctc = ( 1 - self.interctc_weight ) * loss_ctc + self.interctc_weight * loss_interctc if self.use_transducer_decoder: # 2a. Transducer decoder branch ( loss_transducer, cer_transducer, wer_transducer, ) = self._calc_transducer_loss( encoder_out, encoder_out_lens, text, ) if loss_ctc is not None: loss = loss_transducer + (self.ctc_weight * loss_ctc) else: loss = loss_transducer # Collect Transducer branch stats stats["loss_transducer"] = ( loss_transducer.detach() if loss_transducer is not None else None ) stats["cer_transducer"] = cer_transducer stats["wer_transducer"] = wer_transducer else: # 2b. Attention decoder branch if self.ctc_weight != 1.0: loss_att, acc_att, cer_att, wer_att = self._calc_att_loss( encoder_out, encoder_out_lens, text, text_lengths ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att elif self.ctc_weight == 1.0: loss = loss_ctc else: loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att # Collect total loss stats stats["loss"] = loss.detach() # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight
[docs] def collect_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, ) -> Dict[str, torch.Tensor]: if self.extract_feats_in_collect_stats: feats, feats_lengths = self._extract_feats(speech, speech_lengths) else: # Generate dummy stats if extract_feats_in_collect_stats is False logging.warning( "Generating dummy stats for feats and feats_lengths, " "because encoder_conf.extract_feats_in_collect_stats is " f"{self.extract_feats_in_collect_stats}" ) feats, feats_lengths = speech, speech_lengths return {"feats": feats, "feats_lengths": feats_lengths}
[docs] def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) """ with autocast(False): # 1. Extract feats feats, feats_lengths = self._extract_feats(speech, speech_lengths) # 2. Data augmentation if self.specaug is not None and self.training: feats, feats_lengths = self.specaug(feats, feats_lengths) # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: feats, feats_lengths = self.normalize(feats, feats_lengths) # Pre-encoder, e.g. used for raw input data if self.preencoder is not None: feats, feats_lengths = self.preencoder(feats, feats_lengths) # 4. Forward encoder # feats: (Batch, Length, Dim) # -> encoder_out: (Batch, Length2, Dim2) if self.encoder.interctc_use_conditioning: encoder_out, encoder_out_lens, _ = self.encoder( feats, feats_lengths, ctc=self.ctc ) else: encoder_out, encoder_out_lens, _ = self.encoder(feats, feats_lengths) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] # Post-encoder, e.g. NLU if self.postencoder is not None: encoder_out, encoder_out_lens = self.postencoder( encoder_out, encoder_out_lens ) assert encoder_out.size(0) == speech.size(0), ( encoder_out.size(), speech.size(0), ) assert encoder_out.size(1) <= encoder_out_lens.max(), ( encoder_out.size(), encoder_out_lens.max(), ) if intermediate_outs is not None: return (encoder_out, intermediate_outs), encoder_out_lens return encoder_out, encoder_out_lens
def _extract_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: assert speech_lengths.dim() == 1, speech_lengths.shape # for data-parallel speech = speech[:, : speech_lengths.max()] if self.frontend is not None: # Frontend # e.g. STFT and Feature extract # data_loader may send time-domain signal in this case # speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim) feats, feats_lengths = self.frontend(speech, speech_lengths) else: # No frontend and no feature extract feats, feats_lengths = speech, speech_lengths return feats, feats_lengths
[docs] def nll( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ) -> torch.Tensor: """Compute negative log likelihood(nll) from transformer-decoder Normally, this function is called in batchify_nll. Args: encoder_out: (Batch, Length, Dim) encoder_out_lens: (Batch,) ys_pad: (Batch, Length) ys_pad_lens: (Batch,) """ ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 # 1. Forward decoder decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens ) # [batch, seqlen, dim] batch_size = decoder_out.size(0) decoder_num_class = decoder_out.size(2) # nll: negative log-likelihood nll = torch.nn.functional.cross_entropy( decoder_out.view(-1, decoder_num_class), ys_out_pad.view(-1), ignore_index=self.ignore_id, reduction="none", ) nll = nll.view(batch_size, -1) nll = nll.sum(dim=1) assert nll.size(0) == batch_size return nll
[docs] def batchify_nll( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, batch_size: int = 100, ): """Compute negative log likelihood(nll) from transformer-decoder To avoid OOM, this fuction seperate the input into batches. Then call nll for each batch and combine and return results. Args: encoder_out: (Batch, Length, Dim) encoder_out_lens: (Batch,) ys_pad: (Batch, Length) ys_pad_lens: (Batch,) batch_size: int, samples each batch contain when computing nll, you may change this to avoid OOM or increase GPU memory usage """ total_num = encoder_out.size(0) if total_num <= batch_size: nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) else: nll = [] start_idx = 0 while True: end_idx = min(start_idx + batch_size, total_num) batch_encoder_out = encoder_out[start_idx:end_idx, :, :] batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx] batch_ys_pad = ys_pad[start_idx:end_idx, :] batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx] batch_nll = self.nll( batch_encoder_out, batch_encoder_out_lens, batch_ys_pad, batch_ys_pad_lens, ) nll.append(batch_nll) start_idx = end_idx if start_idx == total_num: break nll = torch.cat(nll) assert nll.size(0) == total_num return nll
def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 # 1. Forward decoder decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens ) # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_out_pad) acc_att = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_out_pad, ignore_label=self.ignore_id, ) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att def _calc_ctc_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): # Calc CTC loss loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) # Calc CER using CTC cer_ctc = None if not self.training and self.error_calculator is not None: ys_hat = self.ctc.argmax(encoder_out).data cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) return loss_ctc, cer_ctc def _calc_transducer_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, labels: torch.Tensor, ): """Compute Transducer loss. Args: encoder_out: Encoder output sequences. (B, T, D_enc) encoder_out_lens: Encoder output sequences lengths. (B,) labels: Label ID sequences. (B, L) Return: loss_transducer: Transducer loss value. cer_transducer: Character error rate for Transducer. wer_transducer: Word Error Rate for Transducer. """ decoder_in, target, t_len, u_len = get_transducer_task_io( labels, encoder_out_lens, ignore_id=self.ignore_id, blank_id=self.blank_id, ) self.decoder.set_device(encoder_out.device) decoder_out = self.decoder(decoder_in) joint_out = self.joint_network( encoder_out.unsqueeze(2), decoder_out.unsqueeze(1) ) loss_transducer = self.criterion_transducer( joint_out, target, t_len, u_len, ) cer_transducer, wer_transducer = None, None if not self.training and self.error_calculator_trans is not None: cer_transducer, wer_transducer = self.error_calculator_trans( encoder_out, target ) return loss_transducer, cer_transducer, wer_transducer