Source code for espnet.tts.pytorch_backend.tts

#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2018 Nagoya University (Tomoki Hayashi)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""E2E-TTS training / decoding functions."""

import copy
import json
import logging
import math
import os
import time

import chainer
import kaldiio
import numpy as np
import torch

from chainer.datasets import TransformDataset
from chainer import training
from chainer.training import extensions

from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import snapshot_object
from espnet.asr.asr_utils import torch_load
from espnet.asr.asr_utils import torch_resume
from espnet.asr.asr_utils import torch_snapshot
from espnet.nets.pytorch_backend.nets_utils import pad_list
from espnet.nets.tts_interface import TTSInterface
from espnet.utils.dynamic_import import dynamic_import
from espnet.utils.io_utils import LoadInputsAndTargets
from espnet.utils.training.batchfy import make_batchset
from espnet.utils.training.evaluator import BaseEvaluator

from espnet.utils.deterministic_utils import set_deterministic_pytorch
from espnet.utils.training.train_utils import check_early_stop
from espnet.utils.training.train_utils import set_early_stop

from espnet.utils.training.iterators import ShufflingEnabler
from espnet.utils.training.iterators import ToggleableShufflingMultiprocessIterator
from espnet.utils.training.iterators import ToggleableShufflingSerialIterator

import matplotlib

from espnet.utils.training.tensorboard_logger import TensorboardLogger
from tensorboardX import SummaryWriter

matplotlib.use('Agg')


[docs]class CustomEvaluator(BaseEvaluator): """Custom evaluator.""" def __init__(self, model, iterator, target, converter, device): """Initilize module. Args: model (torch.nn.Module): Pytorch model instance. iterator (chainer.dataset.Iterator): Iterator for validation. target (chainer.Chain): Dummy chain instance. converter (CustomConverter): The batch converter. device (torch.device): The device to be used in evaluation. """ super(CustomEvaluator, self).__init__(iterator, target) self.model = model self.converter = converter self.device = device # The core part of the update routine can be customized by overriding.
[docs] def evaluate(self): """Evaluate over validation iterator.""" iterator = self._iterators['main'] if self.eval_hook: self.eval_hook(self) if hasattr(iterator, 'reset'): iterator.reset() it = iterator else: it = copy.copy(iterator) summary = chainer.reporter.DictSummary() self.model.eval() with torch.no_grad(): for batch in it: observation = {} with chainer.reporter.report_scope(observation): # convert to torch tensor x = self.converter(batch, self.device) if isinstance(x, tuple): self.model(*x) else: self.model(**x) summary.add(observation) self.model.train() return summary.compute_mean()
[docs]class CustomUpdater(training.StandardUpdater): """Custom updater.""" def __init__(self, model, grad_clip, iterator, optimizer, converter, device, accum_grad=1): """Initilize module. Args: model (torch.nn.Module) model: Pytorch model instance. grad_clip (float) grad_clip : The gradient clipping value. iterator (chainer.dataset.Iterator): Iterator for training. optimizer (torch.optim.Optimizer) : Pytorch optimizer instance. converter (CustomConverter) : The batch converter. device (torch.device): The device to be used in training. """ super(CustomUpdater, self).__init__(iterator, optimizer) self.model = model self.grad_clip = grad_clip self.converter = converter self.device = device self.clip_grad_norm = torch.nn.utils.clip_grad_norm_ self.accum_grad = accum_grad self.forward_count = 0 # The core part of the update routine can be customized by overriding.
[docs] def update_core(self): """Update model one step.""" # When we pass one iterator and optimizer to StandardUpdater.__init__, # they are automatically named 'main'. train_iter = self.get_iterator('main') optimizer = self.get_optimizer('main') # Get the next batch (a list of json files) batch = train_iter.next() x = self.converter(batch, self.device) # compute loss and gradient if isinstance(x, tuple): loss = self.model(*x).mean() / self.accum_grad else: loss = self.model(**x).mean() / self.accum_grad loss.backward() # update parameters self.forward_count += 1 if self.forward_count != self.accum_grad: return self.forward_count = 0 # compute the gradient norm to check if it is normal or not grad_norm = self.clip_grad_norm(self.model.parameters(), self.grad_clip) logging.debug('grad norm={}'.format(grad_norm)) if math.isnan(grad_norm): logging.warning('grad norm is nan. Do not update model.') else: optimizer.step() optimizer.zero_grad()
[docs] def update(self): """Run update function.""" self.update_core() if self.forward_count == 0: self.iteration += 1
[docs]class CustomConverter(object): """Custom converter.""" def __init__(self): """Initilize module.""" # NOTE: keep as class for future development pass def __call__(self, batch, device): """Convert a given batch. Args: batch (list): List of ndarrays. device (torch.device): The device to be send. Returns: dict: Dict of converted tensors. Examples: >>> batch = [([np.arange(5), np.arange(3)], [np.random.randn(8, 2), np.random.randn(4, 2)], None, None)] >>> conveter = CustomConverter() >>> conveter(batch, torch.device("cpu")) {'xs': tensor([[0, 1, 2, 3, 4], [0, 1, 2, 0, 0]]), 'ilens': tensor([5, 3]), 'ys': tensor([[[-0.4197, -1.1157], [-1.5837, -0.4299], [-2.0491, 0.9215], [-2.4326, 0.8891], [ 1.2323, 1.7388], [-0.3228, 0.6656], [-0.6025, 1.3693], [-1.0778, 1.3447]], [[ 0.1768, -0.3119], [ 0.4386, 2.5354], [-1.2181, -0.5918], [-0.6858, -0.8843], [ 0.0000, 0.0000], [ 0.0000, 0.0000], [ 0.0000, 0.0000], [ 0.0000, 0.0000]]]), 'labels': tensor([[0., 0., 0., 0., 0., 0., 0., 1.], [0., 0., 0., 1., 1., 1., 1., 1.]]), 'olens': tensor([8, 4])} """ # batch should be located in list assert len(batch) == 1 xs, ys, spembs, spcs = batch[0] # get list of lengths (must be tensor for DataParallel) ilens = torch.from_numpy(np.array([x.shape[0] for x in xs])).long().to(device) olens = torch.from_numpy(np.array([y.shape[0] for y in ys])).long().to(device) # perform padding and conversion to tensor xs = pad_list([torch.from_numpy(x).long() for x in xs], 0).to(device) ys = pad_list([torch.from_numpy(y).float() for y in ys], 0).to(device) # make labels for stop prediction labels = ys.new_zeros(ys.size(0), ys.size(1)) for i, l in enumerate(olens): labels[i, l - 1:] = 1.0 # prepare dict new_batch = { "xs": xs, "ilens": ilens, "ys": ys, "labels": labels, "olens": olens, } # load second target if spcs is not None: spcs = pad_list([torch.from_numpy(spc).float() for spc in spcs], 0).to(device) new_batch["spcs"] = spcs # load speaker embedding if spembs is not None: spembs = torch.from_numpy(np.array(spembs)).float().to(device) new_batch["spembs"] = spembs return new_batch
[docs]def train(args): """Train E2E-TTS model.""" set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning('cuda is not available') # get input and output dimension info with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] utts = list(valid_json.keys()) # reverse input and output dimension idim = int(valid_json[utts[0]]['output'][0]['shape'][1]) odim = int(valid_json[utts[0]]['input'][0]['shape'][1]) logging.info('#input dims : ' + str(idim)) logging.info('#output dims: ' + str(odim)) # get extra input and output dimenstion if args.use_speaker_embedding: args.spk_embed_dim = int(valid_json[utts[0]]['input'][1]['shape'][0]) else: args.spk_embed_dim = None if args.use_second_target: args.spc_dim = int(valid_json[utts[0]]['input'][1]['shape'][1]) else: args.spc_dim = None # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + '/model.json' with open(model_conf, 'wb') as f: logging.info('writing a model config file to' + model_conf) f.write(json.dumps((idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8')) for key in sorted(vars(args).keys()): logging.info('ARGS: ' + key + ': ' + str(vars(args)[key])) # specify model architecture model_class = dynamic_import(args.model_module) model = model_class(idim, odim, args) assert isinstance(model, TTSInterface) logging.info(model) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.ngpu))) if args.batch_size != 0: logging.info('batch size is automatically increased (%d -> %d)' % ( args.batch_size, args.batch_size * args.ngpu)) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") model = model.to(device) # Setup an optimizer if args.opt == 'adam': optimizer = torch.optim.Adam( model.parameters(), args.lr, eps=args.eps, weight_decay=args.weight_decay) elif args.opt == 'noam': from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt(model, args.adim, args.transformer_warmup_steps, args.transformer_lr) else: raise NotImplementedError("unknown optimizer: " + args.opt) # FIXME: TOO DIRTY HACK setattr(optimizer, 'target', reporter) setattr(optimizer, 'serialize', lambda s: reporter.serialize(s)) # read json data with open(args.train_json, 'rb') as f: train_json = json.load(f)['utts'] with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 if use_sortagrad: args.batch_sort_key = "input" # make minibatch list (variable length) train_batchset = make_batchset(train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, batch_sort_key=args.batch_sort_key, min_batch_size=args.ngpu if args.ngpu > 1 else 1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, swap_io=True) valid_batchset = make_batchset(valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, batch_sort_key=args.batch_sort_key, min_batch_size=args.ngpu if args.ngpu > 1 else 1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, swap_io=True) load_tr = LoadInputsAndTargets( mode='tts', use_speaker_embedding=args.use_speaker_embedding, use_second_target=args.use_second_target, preprocess_conf=args.preprocess_conf, preprocess_args={'train': True}, # Switch the mode of preprocessing keep_all_data_on_mem=args.keep_all_data_on_mem, ) load_cv = LoadInputsAndTargets( mode='tts', use_speaker_embedding=args.use_speaker_embedding, use_second_target=args.use_second_target, preprocess_conf=args.preprocess_conf, preprocess_args={'train': False}, # Switch the mode of preprocessing keep_all_data_on_mem=args.keep_all_data_on_mem, ) # hack to make batchsize argument as 1 # actual bathsize is included in a list if args.num_iter_processes > 0: train_iter = ToggleableShufflingMultiprocessIterator( TransformDataset(train_batchset, load_tr), batch_size=1, n_processes=args.num_iter_processes, n_prefetch=8, maxtasksperchild=20, shuffle=not use_sortagrad) valid_iter = ToggleableShufflingMultiprocessIterator( TransformDataset(valid_batchset, load_cv), batch_size=1, repeat=False, shuffle=False, n_processes=args.num_iter_processes, n_prefetch=8, maxtasksperchild=20) else: train_iter = ToggleableShufflingSerialIterator( TransformDataset(train_batchset, load_tr), batch_size=1, shuffle=not use_sortagrad) valid_iter = ToggleableShufflingSerialIterator( TransformDataset(valid_batchset, load_cv), batch_size=1, repeat=False, shuffle=False) # Set up a trainer converter = CustomConverter() updater = CustomUpdater(model, args.grad_clip, train_iter, optimizer, converter, device, args.accum_grad) trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.outdir) # Resume from a snapshot if args.resume: logging.info('resumed from %s' % args.resume) torch_resume(args.resume, trainer) # Evaluate the model with the test dataset for each epoch trainer.extend(CustomEvaluator(model, valid_iter, reporter, converter, device)) # set intervals save_interval = (args.save_interval_epochs, 'epoch') report_interval = (args.report_interval_iters, 'iteration') # Save snapshot for each epoch trainer.extend(torch_snapshot(), trigger=save_interval) # Save best models trainer.extend(snapshot_object(model, 'model.loss.best'), trigger=training.triggers.MinValueTrigger('validation/main/loss', trigger=save_interval)) # Save attention figure for each epoch if args.num_save_attention > 0: data = sorted(list(valid_json.items())[:args.num_save_attention], key=lambda x: int(x[1]['input'][0]['shape'][1]), reverse=True) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class( att_vis_fn, data, args.outdir + '/att_ws', converter=converter, transform=load_cv, device=device, reverse=True) trainer.extend(att_reporter, trigger=save_interval) else: att_reporter = None # Make a plot for training and validation values if hasattr(model, "module"): base_plot_keys = model.module.base_plot_keys else: base_plot_keys = model.base_plot_keys plot_keys = [] for key in base_plot_keys: plot_key = ['main/' + key, 'validation/main/' + key] trainer.extend(extensions.PlotReport(plot_key, 'epoch', file_name=key + '.png')) plot_keys += plot_key trainer.extend(extensions.PlotReport(plot_keys, 'epoch', file_name='all_loss.png')) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport(trigger=report_interval)) report_keys = ['epoch', 'iteration', 'elapsed_time'] + plot_keys trainer.extend(extensions.PrintReport(report_keys), trigger=report_interval) trainer.extend(extensions.ProgressBar(), trigger=report_interval) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": writer = SummaryWriter(args.tensorboard_dir) trainer.extend(TensorboardLogger(writer, att_reporter), trigger=report_interval) if use_sortagrad: trainer.extend(ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, 'epoch')) # Run the training trainer.run() check_early_stop(trainer, args.epochs)
[docs]def decode(args): """Decode with E2E-TTS model.""" set_deterministic_pytorch(args) # read training config idim, odim, train_args = get_model_conf(args.model, args.model_conf) # show arguments for key in sorted(vars(args).keys()): logging.info('args: ' + key + ': ' + str(vars(args)[key])) # define model model_class = dynamic_import(train_args.model_module) model = model_class(idim, odim, train_args) assert isinstance(model, TTSInterface) logging.info(model) # load trained model parameters logging.info('reading model parameters from ' + args.model) torch_load(args.model, model) model.eval() # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") model = model.to(device) # read json data with open(args.json, 'rb') as f: js = json.load(f)['utts'] # check directory outdir = os.path.dirname(args.out) if len(outdir) != 0 and not os.path.exists(outdir): os.makedirs(outdir) load_inputs_and_targets = LoadInputsAndTargets( mode='tts', load_input=False, sort_in_input_length=False, use_speaker_embedding=train_args.use_speaker_embedding, preprocess_conf=train_args.preprocess_conf if args.preprocess_conf is None else args.preprocess_conf, preprocess_args={'train': False} # Switch the mode of preprocessing ) # define function for plot prob and att_ws def _plot_and_save(array, figname, figsize=(6, 4), dpi=150): import matplotlib.pyplot as plt shape = array.shape if len(shape) == 1: # for eos probability plt.figure(figsize=figsize, dpi=dpi) plt.plot(array) plt.xlabel("Frame") plt.ylabel("Probability") plt.ylim([0, 1]) elif len(shape) == 2: # for tacotron 2 attention weights, whose shape is (out_length, in_length) plt.figure(figsize=figsize, dpi=dpi) plt.imshow(array, aspect="auto") plt.xlabel("Input") plt.ylabel("Output") elif len(shape) == 4: # for transformer attention weights, whose shape is (#leyers, #heads, out_length, in_length) plt.figure(figsize=(figsize[0] * shape[0], figsize[1] * shape[1]), dpi=dpi) for idx1, xs in enumerate(array): for idx2, x in enumerate(xs, 1): plt.subplot(shape[0], shape[1], idx1 * shape[1] + idx2) plt.imshow(x, aspect="auto") plt.xlabel("Input") plt.ylabel("Output") else: raise NotImplementedError("Support only from 1D to 4D array.") plt.tight_layout() if not os.path.exists(os.path.dirname(figname)): # NOTE: exist_ok = True is needed for parallel process decoding os.makedirs(os.path.dirname(figname), exist_ok=True) plt.savefig(figname) plt.close() with torch.no_grad(), \ kaldiio.WriteHelper('ark,scp:{o}.ark,{o}.scp'.format(o=args.out)) as f: for idx, utt_id in enumerate(js.keys()): batch = [(utt_id, js[utt_id])] data = load_inputs_and_targets(batch) if train_args.use_speaker_embedding: spemb = data[1][0] spemb = torch.FloatTensor(spemb).to(device) else: spemb = None x = data[0][0] x = torch.LongTensor(x).to(device) # decode and write start_time = time.time() outs, probs, att_ws = model.inference(x, args, spemb=spemb) logging.info("inference speed = %s msec / frame." % ( (time.time() - start_time) / (int(outs.size(0)) * 1000))) if outs.size(0) == x.size(0) * args.maxlenratio: logging.warning("output length reaches maximum length (%s)." % utt_id) logging.info('(%d/%d) %s (size:%d->%d)' % ( idx + 1, len(js.keys()), utt_id, x.size(0), outs.size(0))) f[utt_id] = outs.cpu().numpy() # plot prob and att_ws if probs is not None: _plot_and_save(probs.cpu().numpy(), os.path.dirname(args.out) + "/probs/%s_prob.png" % utt_id) if att_ws is not None: _plot_and_save(att_ws.cpu().numpy(), os.path.dirname(args.out) + "/att_ws/%s_att_ws.png" % utt_id)