Source code for espnet.transform.cmvn

import io

import h5py
import kaldiio
import numpy as np


[docs]class CMVN(object): def __init__(self, stats, norm_means=True, norm_vars=False, filetype='mat', utt2spk=None, spk2utt=None, reverse=False, std_floor=1.0e-20): self.stats_file = stats self.norm_means = norm_means self.norm_vars = norm_vars self.reverse = reverse if isinstance(stats, dict): stats_dict = dict(stats) else: # Use for global CMVN if filetype == 'mat': stats_dict = {None: kaldiio.load_mat(stats)} # Use for global CMVN elif filetype == 'npy': stats_dict = {None: np.load(stats)} # Use for speaker CMVN elif filetype == 'ark': self.accept_uttid = True stats_dict = dict(kaldiio.load_ark(stats)) # Use for speaker CMVN elif filetype == 'hdf5': self.accept_uttid = True stats_dict = h5py.File(stats) else: raise ValueError('Not supporting filetype={}'.format(filetype)) if utt2spk is not None: self.utt2spk = {} with io.open(utt2spk, 'r', encoding='utf-8') as f: for line in f: utt, spk = line.rstrip().split(None, 1) self.utt2spk[utt] = spk elif spk2utt is not None: self.utt2spk = {} with io.open(spk2utt, 'r', encoding='utf-8') as f: for line in f: spk, utts = line.rstrip().split(None, 1) for utt in utts.split(): self.utt2spk[utt] = spk else: self.utt2spk = None # Kaldi makes a matrix for CMVN which has a shape of (2, feat_dim + 1), # and the first vector contains the sum of feats and the second is # the sum of squares. The last value of the first, i.e. stats[0,-1], # is the number of samples for this statistics. self.bias = {} self.scale = {} for spk, stats in stats_dict.items(): assert len(stats) == 2, stats.shape count = stats[0, -1] # If the feature has two or more dimensions if not (np.isscalar(count) or isinstance(count, (int, float))): # The first is only used count = count.flattten()[0] mean = stats[0, :-1] / count # V(x) = E(x^2) - (E(x))^2 var = stats[1, :-1] / count - mean * mean std = np.maximum(np.sqrt(var), std_floor) self.bias[spk] = -mean self.scale[spk] = 1 / std def __repr__(self): return ('{name}(stats_file={stats_file}, ' 'norm_means={norm_means}, norm_vars={norm_vars}, ' 'reverse={reverse})' .format(name=self.__class__.__name__, stats_file=self.stats_file, norm_means=self.norm_means, norm_vars=self.norm_vars, reverse=self.reverse)) def __call__(self, x, uttid=None): if self.utt2spk is not None: spk = self.utt2spk[uttid] else: spk = uttid if not self.reverse: if self.norm_means: x = np.add(x, self.bias[spk]) if self.norm_vars: x = np.multiply(x, self.scale[spk]) else: if self.norm_means: x = np.subtract(x, self.bias[spk]) if self.norm_vars: x = np.divide(x, self.scale[spk]) return x
[docs]class UtteranceCMVN(object): def __init__(self, norm_means=True, norm_vars=False, std_floor=1.0e-20): self.norm_means = norm_means self.norm_vars = norm_vars self.std_floor = std_floor def __repr__(self): return ('{name}(norm_means={norm_means}, norm_vars={norm_vars})' .format(name=self.__class__.__name__, norm_means=self.norm_means, norm_vars=self.norm_vars)) def __call__(self, x, uttid=None): # x: [Time, Dim] square_sums = (x ** 2).sum(axis=0) mean = x.mean(axis=0) if self.norm_means: x = np.subtract(x, mean) if self.norm_vars: var = square_sums / x.shape[0] - mean ** 2 std = np.maximum(np.sqrt(var), self.std_floor) x = np.divide(x, std) return x