import logging
import matplotlib.pyplot as plt
import numpy
from espnet.asr import asr_utils
def _plot_and_save_attention(att_w, filename):
# dynamically import matplotlib due to not found error
from matplotlib.ticker import MaxNLocator
import os
d = os.path.dirname(filename)
if not os.path.exists(d):
os.makedirs(d)
w, h = plt.figaspect(1.0 / len(att_w))
fig = plt.Figure(figsize=(w * 2, h * 2))
axes = fig.subplots(1, len(att_w))
if len(att_w) == 1:
axes = [axes]
for ax, aw in zip(axes, att_w):
# plt.subplot(1, len(att_w), h)
ax.imshow(aw.astype(numpy.float32), aspect="auto")
ax.set_xlabel("Input")
ax.set_ylabel("Output")
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
fig.tight_layout()
return fig
[docs]def savefig(plot, filename):
plot.savefig(filename)
plt.clf()
[docs]def plot_multi_head_attention(data, attn_dict, outdir, suffix="png", savefn=savefig):
"""Plot multi head attentions
:param dict data: utts info from json file
:param dict[str, torch.Tensor] attn_dict: multi head attention dict.
values should be torch.Tensor (head, input_length, output_length)
:param str outdir: dir to save fig
:param str suffix: filename suffix including image type (e.g., png)
:param savefn: function to save
"""
for name, att_ws in attn_dict.items():
for idx, att_w in enumerate(att_ws):
filename = "%s/%s.%s.%s" % (
outdir, data[idx][0], name, suffix)
dec_len = int(data[idx][1]['output'][0]['shape'][0])
enc_len = int(data[idx][1]['input'][0]['shape'][0])
if "encoder" in name:
att_w = att_w[:, :enc_len, :enc_len]
elif "decoder" in name:
if "self" in name:
att_w = att_w[:, :dec_len, :dec_len]
else:
att_w = att_w[:, :dec_len, :enc_len]
else:
logging.warning("unknown name for shaping attention")
fig = _plot_and_save_attention(att_w, filename)
savefn(fig, filename)
[docs]class PlotAttentionReport(asr_utils.PlotAttentionReport):
[docs] def plotfn(self, *args, **kwargs):
plot_multi_head_attention(*args, **kwargs)
def __call__(self, trainer):
attn_dict = self.get_attention_weights()
suffix = "ep.{.updater.epoch}.png".format(trainer)
self.plotfn(self.data, attn_dict, self.outdir, suffix, savefig)
[docs] def get_attention_weights(self):
batch = self.converter([self.transform(self.data)], self.device)
if isinstance(batch, tuple):
att_ws = self.att_vis_fn(*batch)
elif isinstance(batch, dict):
att_ws = self.att_vis_fn(**batch)
return att_ws
[docs] def log_attentions(self, logger, step):
def log_fig(plot, filename):
from os.path import basename
logger.add_figure(basename(filename), plot, step)
plt.clf()
attn_dict = self.get_attention_weights()
self.plotfn(self.data, attn_dict, self.outdir, "", log_fig)