Source code for espnet.nets.pytorch_backend.transformer.encoder_layer

import torch

from torch import nn

from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm


[docs]class EncoderLayer(nn.Module): """Encoder layer module :param int size: input dim :param espnet.nets.pytorch_backend.transformer.attention.MultiHeadedAttention self_attn: self attention module :param espnet.nets.pytorch_backend.transformer.positionwise_feed_forward.PositionwiseFeedForward feed_forward: feed forward module :param float dropout_rate: dropout rate :param bool normalize_before: whether to use layer_norm before the first block :param bool concat_after: whether to concat attention layer's input and output if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) """ def __init__(self, size, self_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.norm1 = LayerNorm(size) self.norm2 = LayerNorm(size) self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before self.concat_after = concat_after if self.concat_after: self.concat_linear = nn.Linear(size + size, size)
[docs] def forward(self, x, mask): """Compute encoded features :param torch.Tensor x: encoded source features (batch, max_time_in, size) :param torch.Tensor mask: mask for x (batch, max_time_in) :rtype: Tuple[torch.Tensor, torch.Tensor] """ residual = x if self.normalize_before: x = self.norm1(x) if self.concat_after: x_concat = torch.cat((x, self.self_attn(x, x, x, mask)), dim=-1) x = residual + self.concat_linear(x_concat) else: x = residual + self.dropout(self.self_attn(x, x, x, mask)) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) x = residual + self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm2(x) return x, mask