Source code for espnet.nets.pytorch_backend.transformer.encoder

import torch

from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.encoder_layer import EncoderLayer
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import MultiLayeredConv1d
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import PositionwiseFeedForward
from espnet.nets.pytorch_backend.transformer.repeat import repeat
from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling


[docs]class Encoder(torch.nn.Module): """Transformer encoder module :param int idim: input dim :param int attention_dim: dimention of attention :param int attention_heads: the number of heads of multi head attention :param int linear_units: the number of units of position-wise feed forward :param int num_blocks: the number of decoder blocks :param float dropout_rate: dropout rate :param float attention_dropout_rate: dropout rate in attention :param float positional_dropout_rate: dropout rate after adding positional encoding :param str or torch.nn.Module input_layer: input layer type :param class pos_enc_class: PositionalEncoding or ScaledPositionalEncoding :param bool normalize_before: whether to use layer_norm before the first block :param bool concat_after: whether to concat attention layer's input and output if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) :param str positionwise_layer_type: linear of conv1d :param int positionwise_conv_kernel_size: kernel size of positionwise conv1d layer :param int padding_idx: padding_idx for input_layer=embed """ def __init__(self, idim, attention_dim=256, attention_heads=4, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, attention_dropout_rate=0.0, input_layer="conv2d", pos_enc_class=PositionalEncoding, normalize_before=True, concat_after=False, positionwise_layer_type="linear", positionwise_conv_kernel_size=1, padding_idx=-1): super(Encoder, self).__init__() if input_layer == "linear": self.embed = torch.nn.Sequential( torch.nn.Linear(idim, attention_dim), torch.nn.LayerNorm(attention_dim), torch.nn.Dropout(dropout_rate), torch.nn.ReLU(), pos_enc_class(attention_dim, positional_dropout_rate) ) elif input_layer == "conv2d": self.embed = Conv2dSubsampling(idim, attention_dim, dropout_rate) elif input_layer == "embed": self.embed = torch.nn.Sequential( torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx), pos_enc_class(attention_dim, positional_dropout_rate) ) elif isinstance(input_layer, torch.nn.Module): self.embed = torch.nn.Sequential( input_layer, pos_enc_class(attention_dim, positional_dropout_rate), ) elif input_layer is None: self.embed = torch.nn.Sequential( pos_enc_class(attention_dim, positional_dropout_rate) ) else: raise ValueError("unknown input_layer: " + input_layer) self.normalize_before = normalize_before if positionwise_layer_type == "linear": positionwise_layer = PositionwiseFeedForward positionwise_layer_args = (attention_dim, linear_units, dropout_rate) elif positionwise_layer_type == "conv1d": positionwise_layer = MultiLayeredConv1d positionwise_layer_args = (attention_dim, linear_units, positionwise_conv_kernel_size, dropout_rate) else: raise NotImplementedError("Support only linear or conv1d.") self.encoders = repeat( num_blocks, lambda: EncoderLayer( attention_dim, MultiHeadedAttention(attention_heads, attention_dim, attention_dropout_rate), positionwise_layer(*positionwise_layer_args), dropout_rate, normalize_before, concat_after ) ) if self.normalize_before: self.after_norm = LayerNorm(attention_dim)
[docs] def forward(self, xs, masks): """Embed positions in tensor :param torch.Tensor xs: input tensor :param torch.Tensor masks: input mask :return: position embedded tensor and mask :rtype Tuple[torch.Tensor, torch.Tensor]: """ if isinstance(self.embed, Conv2dSubsampling): xs, masks = self.embed(xs, masks) else: xs = self.embed(xs) xs, masks = self.encoders(xs, masks) if self.normalize_before: xs = self.after_norm(xs) return xs, masks