Source code for espnet.nets.pytorch_backend.transformer.embedding

"""Positonal Encoding Module."""
import math

import torch


def _pre_hook(state_dict, prefix, local_metadata, strict,
              missing_keys, unexpected_keys, error_msgs):
    """Perform pre-hook in load_state_dict for backward compatibility.

    Note:
        We saved self.pe until v.0.5.2 but we have omitted it later.
        Therefore, we remove the item "pe" from `state_dict` for backward compatibility.

    """
    k = prefix + "pe"
    if k in state_dict:
        state_dict.pop(k)


[docs]class PositionalEncoding(torch.nn.Module): """Positional encoding.""" def __init__(self, d_model, dropout_rate, max_len=5000): """Initialize class. :param int d_model: embedding dim :param float dropout_rate: dropout rate :param int max_len: maximum input length """ super(PositionalEncoding, self).__init__() self.d_model = d_model self.xscale = math.sqrt(self.d_model) self.dropout = torch.nn.Dropout(p=dropout_rate) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) self._register_load_state_dict_pre_hook(_pre_hook)
[docs] def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: if self.pe.size(1) >= x.size(1): if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = torch.zeros(x.size(1), self.d_model) position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe.to(device=x.device, dtype=x.dtype)
[docs] def forward(self, x: torch.Tensor): """Add positional encoding. Args: x (torch.Tensor): Input. Its shape is (batch, time, ...) Returns: torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) """ self.extend_pe(x) x = x * self.xscale + self.pe[:, :x.size(1)] return self.dropout(x)
[docs]class ScaledPositionalEncoding(PositionalEncoding): """Scaled positional encoding module. See also: Sec. 3.2 https://arxiv.org/pdf/1809.08895.pdf """ def __init__(self, d_model, dropout_rate, max_len=5000): """Initialize class. :param int d_model: embedding dim :param float dropout_rate: dropout rate :param int max_len: maximum input length """ super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len) self.alpha = torch.nn.Parameter(torch.tensor(1.0))
[docs] def reset_parameters(self): """Reset parameters.""" self.alpha.data = torch.tensor(1.0)
[docs] def forward(self, x): """Add positional encoding. Args: x (torch.Tensor): Input. Its shape is (batch, time, ...) Returns: torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) """ self.extend_pe(x) x = x + self.alpha * self.pe[:, :x.size(1)] return self.dropout(x)