Source code for espnet.nets.pytorch_backend.transformer.decoder_layer

import torch

from torch import nn

from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm


[docs]class DecoderLayer(nn.Module): """Single decoder layer module :param int size: input dim :param espnet.nets.pytorch_backend.transformer.attention.MultiHeadedAttention self_attn: self attention module :param espnet.nets.pytorch_backend.transformer.attention.MultiHeadedAttention src_attn: source attention module :param espnet.nets.pytorch_backend.transformer.positionwise_feed_forward.PositionwiseFeedForward feed_forward: feed forward layer module :param float dropout_rate: dropout rate :param bool normalize_before: whether to use layer_norm before the first block :param bool concat_after: whether to concat attention layer's input and output if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) """ def __init__(self, size, self_attn, src_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.norm1 = LayerNorm(size) self.norm2 = LayerNorm(size) self.norm3 = LayerNorm(size) self.dropout = nn.Dropout(dropout_rate) self.normalize_before = normalize_before self.concat_after = concat_after if self.concat_after: self.concat_linear1 = nn.Linear(size + size, size) self.concat_linear2 = nn.Linear(size + size, size)
[docs] def forward(self, tgt, tgt_mask, memory, memory_mask): """Compute decoded features :param torch.Tensor tgt: decoded previous target features (batch, max_time_out, size) :param torch.Tensor tgt_mask: mask for x (batch, max_time_out) :param torch.Tensor memory: encoded source features (batch, max_time_in, size) :param torch.Tensor memory_mask: mask for memory (batch, max_time_in) """ residual = tgt if self.normalize_before: tgt = self.norm1(tgt) if self.concat_after: tgt_concat = torch.cat((tgt, self.self_attn(tgt, tgt, tgt, tgt_mask)), dim=-1) x = residual + self.concat_linear1(tgt_concat) else: x = residual + self.dropout(self.self_attn(tgt, tgt, tgt, tgt_mask)) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) if self.concat_after: x_concat = torch.cat((x, self.src_attn(x, memory, memory, memory_mask)), dim=-1) x = residual + self.concat_linear2(x_concat) else: x = residual + self.dropout(self.src_attn(x, memory, memory, memory_mask)) if not self.normalize_before: x = self.norm2(x) residual = x if self.normalize_before: x = self.norm3(x) x = residual + self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm3(x) return x, tgt_mask, memory, memory_mask