Source code for espnet.nets.pytorch_backend.transformer.attention

import math

import numpy
import torch
from torch import nn


[docs]class MultiHeadedAttention(nn.Module): """Multi-Head Attention layer :param int n_head: the number of head s :param int n_feat: the number of features :param float dropout_rate: dropout rate """ def __init__(self, n_head, n_feat, dropout_rate): super(MultiHeadedAttention, self).__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_q = nn.Linear(n_feat, n_feat) self.linear_k = nn.Linear(n_feat, n_feat) self.linear_v = nn.Linear(n_feat, n_feat) self.linear_out = nn.Linear(n_feat, n_feat) self.attn = None self.dropout = nn.Dropout(p=dropout_rate)
[docs] def forward(self, query, key, value, mask): """Compute 'Scaled Dot Product Attention' :param torch.Tensor query: (batch, time1, size) :param torch.Tensor key: (batch, time2, size) :param torch.Tensor value: (batch, time2, size) :param torch.Tensor mask: (batch, time1, time2) :param torch.nn.Dropout dropout: :return torch.Tensor: attentined and transformed `value` (batch, time1, d_model) weighted by the query dot key attention (batch, head, time1, time2) """ n_batch = query.size(0) q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) q = q.transpose(1, 2) # (batch, head, time1, d_k) k = k.transpose(1, 2) # (batch, head, time2, d_k) v = v.transpose(1, 2) # (batch, head, time2, d_k) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) # (batch, head, time1, time2) if mask is not None: mask = mask.unsqueeze(1).eq(0) # (batch, 1, time1, time2) min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min) scores = scores.masked_fill(mask, min_value) self.attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0) # (batch, head, time1, time2) else: self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(self.attn) x = torch.matmul(p_attn, v) # (batch, head, time1, d_k) x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model)