Source code for espnet.nets.pytorch_backend.lm.transformer

"""Transformer language model."""

from typing import Any
from typing import Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from espnet.nets.lm_interface import LMInterface
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.encoder import Encoder
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask


[docs]class TransformerLM(nn.Module, LMInterface): """Transformer language model."""
[docs] @staticmethod def add_arguments(parser): """Add arguments to command line argument parser.""" parser.add_argument('--layer', type=int, default=4, help='Number of hidden layers') parser.add_argument('--unit', type=int, default=1024, help='Number of hidden units in feedforward layer') parser.add_argument('--att-unit', type=int, default=256, help='Number of hidden units in attention layer') parser.add_argument('--head', type=int, default=2, help='Number of multi head attention') parser.add_argument('--dropout-rate', type=float, default=0.5, help='dropout probability') parser.add_argument('--posenc-len', type=int, default=10000, help='Predefined length of positional encoding cache') return parser
def __init__(self, n_vocab, args): """Initialize class. Args: n_vocab (int): The size of the vocabulary args (argparse.Namespace): configurations. see py:method:`add_arguments` """ nn.Module.__init__(self) self.model_type = 'Transformer' self.src_mask = None self.encoder = Encoder( n_vocab, args.att_unit, args.head, args.unit, args.layer, args.dropout_rate, args.dropout_rate, args.dropout_rate, input_layer="embed") # reset posenc self.encoder.embed[1] = PositionalEncoding(args.att_unit, args.dropout_rate, args.posenc_len) self.decoder = nn.Linear(args.att_unit, n_vocab) def _target_mask(self, ys_in_pad): ys_mask = ys_in_pad != 0 m = subsequent_mask(ys_mask.size(-1), device=ys_mask.device).unsqueeze(0) return ys_mask.unsqueeze(-2) & m
[docs] def forward(self, x: torch.Tensor, t: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Compute LM loss value from buffer sequences. Args: x (torch.Tensor): Input ids. (batch, len) t (torch.Tensor): Target ids. (batch, len) Returns: tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of loss to backward (scalar), negative log-likelihood of t: -log p(t) (scalar) and the number of elements in x (scalar) Notes: The last two return values are used in perplexity: p(t)^{-n} = exp(-log p(t) / n) """ xm = (x != 0) h, _ = self.encoder(x, self._target_mask(x)) y = self.decoder(h) loss = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none") mask = xm.to(dtype=loss.dtype) logp = loss * mask.view(-1) logp = logp.sum() count = mask.sum() return logp / count, logp, count
[docs] def score(self, y: torch.Tensor, state: Any, x: torch.Tensor) -> Tuple[torch.Tensor, Any]: """Score new token. Args: y (torch.Tensor): 1D torch.int64 prefix tokens. state: Scorer state for prefix tokens x (torch.Tensor): encoder feature that generates ys. Returns: tuple[torch.Tensor, Any]: Tuple of torch.float32 scores for next token (n_vocab) and next state for ys """ y = y.unsqueeze(0) h, _ = self.encoder(y, self._target_mask(y)) h = self.decoder(h)[:, -1] logp = h.log_softmax(dim=-1).squeeze(0) return logp, None