Source code for espnet.nets.pytorch_backend.frontends.dnn_beamformer

from typing import Tuple

import torch
from torch.nn import functional as F

from espnet.nets.pytorch_backend.frontends.beamformer \
    import apply_beamforming_vector
from espnet.nets.pytorch_backend.frontends.beamformer \
    import get_mvdr_vector
from espnet.nets.pytorch_backend.frontends.beamformer \
    import get_power_spectral_density_matrix
from espnet.nets.pytorch_backend.frontends.mask_estimator import MaskEstimator
from torch_complex.tensor import ComplexTensor


[docs]class DNN_Beamformer(torch.nn.Module): """DNN mask based Beamformer Citation: Multichannel End-to-end Speech Recognition; T. Ochiai et al., 2017; https://arxiv.org/abs/1703.04783 """ def __init__(self, bidim, btype='blstmp', blayers=3, bunits=300, bprojs=320, dropout_rate=0.0, badim=320, ref_channel: int = -1, beamformer_type='mvdr'): super().__init__() self.mask = MaskEstimator(btype, bidim, blayers, bunits, bprojs, dropout_rate, nmask=2) self.ref = AttentionReference(bidim, badim) self.ref_channel = ref_channel if beamformer_type != 'mvdr': raise ValueError( 'Not supporting beamformer_type={}'.format(beamformer_type)) self.beamformer_type = beamformer_type
[docs] def forward(self, data: ComplexTensor, ilens: torch.LongTensor) \ -> Tuple[ComplexTensor, torch.LongTensor, ComplexTensor]: """The forward function Notation: B: Batch C: Channel T: Time or Sequence length F: Freq Args: data (ComplexTensor): (B, T, C, F) ilens (torch.Tensor): (B,) Returns: enhanced (ComplexTensor): (B, T, F) ilens (torch.Tensor): (B,) """ # data (B, T, C, F) -> (B, F, C, T) data = data.permute(0, 3, 2, 1) # mask: (B, F, C, T) (mask_speech, mask_noise), _ = self.mask(data, ilens) psd_speech = get_power_spectral_density_matrix(data, mask_speech) psd_noise = get_power_spectral_density_matrix(data, mask_noise) # u: (B, C) if self.ref_channel < 0: u, _ = self.ref(psd_speech, ilens) else: # (optional) Create onehot vector for fixed reference microphone u = torch.zeros(*(data.size()[:-3] + (data.size(-2),)), device=data.device) u[..., self.ref_channel].fill_(1) ws = get_mvdr_vector(psd_speech, psd_noise, u) enhanced = apply_beamforming_vector(ws, data) # (..., F, T) -> (..., T, F) enhanced = enhanced.transpose(-1, -2) mask_speech = mask_speech.transpose(-1, -3) return enhanced, ilens, mask_speech
[docs]class AttentionReference(torch.nn.Module): def __init__(self, bidim, att_dim): super().__init__() self.mlp_psd = torch.nn.Linear(bidim, att_dim) self.gvec = torch.nn.Linear(att_dim, 1)
[docs] def forward(self, psd_in: ComplexTensor, ilens: torch.LongTensor, scaling: float = 2.0) -> Tuple[torch.Tensor, torch.LongTensor]: """The forward function Args: psd_in (ComplexTensor): (B, F, C, C) ilens (torch.Tensor): (B,) scaling (float): Returns: u (torch.Tensor): (B, C) ilens (torch.Tensor): (B,) """ B, _, C = psd_in.size()[:3] assert psd_in.size(2) == psd_in.size(3), psd_in.size() # psd_in: (B, F, C, C) psd = psd_in.masked_fill(torch.eye(C, dtype=torch.uint8, device=psd_in.device), 0) # psd: (B, F, C, C) -> (B, C, F) psd = (psd.sum(dim=-1) / (C - 1)).transpose(-1, -2) # Calculate amplitude psd_feat = (psd.real ** 2 + psd.imag ** 2) ** 0.5 # (B, C, F) -> (B, C, F2) mlp_psd = self.mlp_psd(psd_feat) # (B, C, F2) -> (B, C, 1) -> (B, C) e = self.gvec(torch.tanh(mlp_psd)).squeeze(-1) u = F.softmax(scaling * e, dim=-1) return u, ilens