Source code for espnet.nets.pytorch_backend.e2e_asr_transformer

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)
from argparse import Namespace
from distutils.util import strtobool

import logging
import math

import torch

from espnet.nets.asr_interface import ASRInterface
from espnet.nets.pytorch_backend.ctc import CTC
from espnet.nets.pytorch_backend.e2e_asr import CTC_LOSS_THRESHOLD
from espnet.nets.pytorch_backend.e2e_asr import Reporter
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.nets_utils import th_accuracy
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.decoder import Decoder
from espnet.nets.pytorch_backend.transformer.encoder import Encoder
from espnet.nets.pytorch_backend.transformer.initializer import initialize
from espnet.nets.pytorch_backend.transformer.label_smoothing_loss import LabelSmoothingLoss
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
from espnet.nets.pytorch_backend.transformer.plot import PlotAttentionReport
from espnet.nets.scorers.ctc import CTCPrefixScorer


[docs]class E2E(ASRInterface, torch.nn.Module):
[docs] @staticmethod def add_arguments(parser): group = parser.add_argument_group("transformer model setting") group.add_argument("--transformer-init", type=str, default="pytorch", choices=["pytorch", "xavier_uniform", "xavier_normal", "kaiming_uniform", "kaiming_normal"], help='how to initialize transformer parameters') group.add_argument("--transformer-input-layer", type=str, default="conv2d", choices=["conv2d", "linear", "embed"], help='transformer input layer type') group.add_argument('--transformer-attn-dropout-rate', default=None, type=float, help='dropout in transformer attention. use --dropout-rate if None is set') group.add_argument('--transformer-lr', default=10.0, type=float, help='Initial value of learning rate') group.add_argument('--transformer-warmup-steps', default=25000, type=int, help='optimizer warmup steps') group.add_argument('--transformer-length-normalized-loss', default=True, type=strtobool, help='normalize loss by length') group.add_argument('--dropout-rate', default=0.0, type=float, help='Dropout rate for the encoder') # Encoder group.add_argument('--elayers', default=4, type=int, help='Number of encoder layers (for shared recognition part in multi-speaker asr mode)') group.add_argument('--eunits', '-u', default=300, type=int, help='Number of encoder hidden units') # Attention group.add_argument('--adim', default=320, type=int, help='Number of attention transformation dimensions') group.add_argument('--aheads', default=4, type=int, help='Number of heads for multi head attention') # Decoder group.add_argument('--dlayers', default=1, type=int, help='Number of decoder layers') group.add_argument('--dunits', default=320, type=int, help='Number of decoder hidden units') return parser
@property def attention_plot_class(self): return PlotAttentionReport def __init__(self, idim, odim, args, ignore_id=-1): torch.nn.Module.__init__(self) if args.transformer_attn_dropout_rate is None: args.transformer_attn_dropout_rate = args.dropout_rate self.encoder = Encoder( idim=idim, attention_dim=args.adim, attention_heads=args.aheads, linear_units=args.eunits, num_blocks=args.elayers, input_layer=args.transformer_input_layer, dropout_rate=args.dropout_rate, positional_dropout_rate=args.dropout_rate, attention_dropout_rate=args.transformer_attn_dropout_rate ) self.decoder = Decoder( odim=odim, attention_dim=args.adim, attention_heads=args.aheads, linear_units=args.dunits, num_blocks=args.dlayers, dropout_rate=args.dropout_rate, positional_dropout_rate=args.dropout_rate, self_attention_dropout_rate=args.transformer_attn_dropout_rate, src_attention_dropout_rate=args.transformer_attn_dropout_rate ) self.sos = odim - 1 self.eos = odim - 1 self.odim = odim self.ignore_id = ignore_id self.subsample = [1] self.reporter = Reporter() # self.lsm_weight = a self.criterion = LabelSmoothingLoss(self.odim, self.ignore_id, args.lsm_weight, args.transformer_length_normalized_loss) # self.verbose = args.verbose self.reset_parameters(args) self.adim = args.adim self.mtlalpha = args.mtlalpha if args.mtlalpha > 0.0: self.ctc = CTC(odim, args.adim, args.dropout_rate, ctc_type=args.ctc_type, reduce=True) else: self.ctc = None if args.report_cer or args.report_wer: from espnet.nets.e2e_asr_common import ErrorCalculator self.error_calculator = ErrorCalculator(args.char_list, args.sym_space, args.sym_blank, args.report_cer, args.report_wer) else: self.error_calculator = None self.rnnlm = None
[docs] def reset_parameters(self, args): # initialize parameters initialize(self, args.transformer_init)
[docs] def add_sos_eos(self, ys_pad): from espnet.nets.pytorch_backend.nets_utils import pad_list eos = ys_pad.new([self.eos]) sos = ys_pad.new([self.sos]) ys = [y[y != self.ignore_id] for y in ys_pad] # parse padded ys ys_in = [torch.cat([sos, y], dim=0) for y in ys] ys_out = [torch.cat([y, eos], dim=0) for y in ys] return pad_list(ys_in, self.eos), pad_list(ys_out, self.ignore_id)
[docs] def target_mask(self, ys_in_pad): ys_mask = ys_in_pad != self.ignore_id m = subsequent_mask(ys_mask.size(-1), device=ys_mask.device).unsqueeze(0) return ys_mask.unsqueeze(-2) & m
[docs] def forward(self, xs_pad, ilens, ys_pad): '''E2E forward :param torch.Tensor xs_pad: batch of padded source sequences (B, Tmax, idim) :param torch.Tensor ilens: batch of lengths of source sequences (B) :param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax) :return: ctc loass value :rtype: torch.Tensor :return: attention loss value :rtype: torch.Tensor :return: accuracy in attention decoder :rtype: float ''' # 1. forward encoder xs_pad = xs_pad[:, :max(ilens)] # for data parallel src_mask = (~make_pad_mask(ilens.tolist())).to(xs_pad.device).unsqueeze(-2) hs_pad, hs_mask = self.encoder(xs_pad, src_mask) self.hs_pad = hs_pad # 2. forward decoder ys_in_pad, ys_out_pad = self.add_sos_eos(ys_pad) ys_mask = self.target_mask(ys_in_pad) pred_pad, pred_mask = self.decoder(ys_in_pad, ys_mask, hs_pad, hs_mask) self.pred_pad = pred_pad # 3. compute attenttion loss loss_att = self.criterion(pred_pad, ys_out_pad) self.acc = th_accuracy(pred_pad.view(-1, self.odim), ys_out_pad, ignore_label=self.ignore_id) # TODO(karita) show predicted text # TODO(karita) calculate these stats cer_ctc = None if self.mtlalpha == 0.0: loss_ctc = None else: batch_size = xs_pad.size(0) hs_len = hs_mask.view(batch_size, -1).sum(1) loss_ctc = self.ctc(hs_pad.view(batch_size, -1, self.adim), hs_len, ys_pad) if self.error_calculator is not None: ys_hat = self.ctc.argmax(hs_pad.view(batch_size, -1, self.adim)).data cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) # 5. compute cer/wer if self.training or self.error_calculator is None: cer, wer = None, None else: ys_hat = pred_pad.argmax(dim=-1) cer, wer = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) # copyied from e2e_asr alpha = self.mtlalpha if alpha == 0: self.loss = loss_att loss_att_data = float(loss_att) loss_ctc_data = None elif alpha == 1: self.loss = loss_ctc loss_att_data = None loss_ctc_data = float(loss_ctc) else: self.loss = alpha * loss_ctc + (1 - alpha) * loss_att loss_att_data = float(loss_att) loss_ctc_data = float(loss_ctc) loss_data = float(self.loss) if loss_data < CTC_LOSS_THRESHOLD and not math.isnan(loss_data): self.reporter.report(loss_ctc_data, loss_att_data, self.acc, cer_ctc, cer, wer, loss_data) else: logging.warning('loss (=%f) is not correct', loss_data) return self.loss
[docs] def scorers(self): return dict(decoder=self.decoder, ctc=CTCPrefixScorer(self.ctc, self.eos))
[docs] def encode(self, feat): self.eval() feat = torch.as_tensor(feat).unsqueeze(0) enc_output, _ = self.encoder(feat, None) return enc_output.squeeze(0)
[docs] def recognize(self, feat, recog_args, char_list=None, rnnlm=None, use_jit=False): '''recognize feat :param ndnarray x: input acouctic feature (B, T, D) or (T, D) :param namespace recog_args: argment namespace contraining options :param list char_list: list of characters :param torch.nn.Module rnnlm: language model module :return: N-best decoding results :rtype: list TODO(karita): do not recompute previous attention for faster decoding ''' enc_output = self.encode(feat).unsqueeze(0) if recog_args.ctc_weight > 0.0: lpz = self.ctc.log_softmax(enc_output) lpz = lpz.squeeze(0) else: lpz = None h = enc_output.squeeze(0) logging.info('input lengths: ' + str(h.size(0))) # search parms beam = recog_args.beam_size penalty = recog_args.penalty ctc_weight = recog_args.ctc_weight # preprare sos y = self.sos vy = h.new_zeros(1).long() if recog_args.maxlenratio == 0: maxlen = h.shape[0] else: # maxlen >= 1 maxlen = max(1, int(recog_args.maxlenratio * h.size(0))) minlen = int(recog_args.minlenratio * h.size(0)) logging.info('max output length: ' + str(maxlen)) logging.info('min output length: ' + str(minlen)) # initialize hypothesis if rnnlm: hyp = {'score': 0.0, 'yseq': [y], 'rnnlm_prev': None} else: hyp = {'score': 0.0, 'yseq': [y]} if lpz is not None: import numpy from espnet.nets.ctc_prefix_score import CTCPrefixScore ctc_prefix_score = CTCPrefixScore(lpz.detach().numpy(), 0, self.eos, numpy) hyp['ctc_state_prev'] = ctc_prefix_score.initial_state() hyp['ctc_score_prev'] = 0.0 if ctc_weight != 1.0: # pre-pruning based on attention scores from espnet.nets.pytorch_backend.rnn.decoders import CTC_SCORING_RATIO ctc_beam = min(lpz.shape[-1], int(beam * CTC_SCORING_RATIO)) else: ctc_beam = lpz.shape[-1] hyps = [hyp] ended_hyps = [] import six traced_decoder = None for i in six.moves.range(maxlen): logging.debug('position ' + str(i)) hyps_best_kept = [] for hyp in hyps: vy.unsqueeze(1) vy[0] = hyp['yseq'][i] # get nbest local scores and their ids ys_mask = subsequent_mask(i + 1).unsqueeze(0) ys = torch.tensor(hyp['yseq']).unsqueeze(0) # FIXME: jit does not match non-jit result if use_jit: if traced_decoder is None: traced_decoder = torch.jit.trace(self.decoder.recognize, (ys, ys_mask, enc_output)) local_att_scores = traced_decoder(ys, ys_mask, enc_output) else: local_att_scores = self.decoder.recognize(ys, ys_mask, enc_output) if rnnlm: rnnlm_state, local_lm_scores = rnnlm.predict(hyp['rnnlm_prev'], vy) local_scores = local_att_scores + recog_args.lm_weight * local_lm_scores else: local_scores = local_att_scores if lpz is not None: local_best_scores, local_best_ids = torch.topk( local_att_scores, ctc_beam, dim=1) ctc_scores, ctc_states = ctc_prefix_score( hyp['yseq'], local_best_ids[0], hyp['ctc_state_prev']) local_scores = \ (1.0 - ctc_weight) * local_att_scores[:, local_best_ids[0]] \ + ctc_weight * torch.from_numpy(ctc_scores - hyp['ctc_score_prev']) if rnnlm: local_scores += recog_args.lm_weight * local_lm_scores[:, local_best_ids[0]] local_best_scores, joint_best_ids = torch.topk(local_scores, beam, dim=1) local_best_ids = local_best_ids[:, joint_best_ids[0]] else: local_best_scores, local_best_ids = torch.topk(local_scores, beam, dim=1) for j in six.moves.range(beam): new_hyp = {} new_hyp['score'] = hyp['score'] + float(local_best_scores[0, j]) new_hyp['yseq'] = [0] * (1 + len(hyp['yseq'])) new_hyp['yseq'][:len(hyp['yseq'])] = hyp['yseq'] new_hyp['yseq'][len(hyp['yseq'])] = int(local_best_ids[0, j]) if rnnlm: new_hyp['rnnlm_prev'] = rnnlm_state if lpz is not None: new_hyp['ctc_state_prev'] = ctc_states[joint_best_ids[0, j]] new_hyp['ctc_score_prev'] = ctc_scores[joint_best_ids[0, j]] # will be (2 x beam) hyps at most hyps_best_kept.append(new_hyp) hyps_best_kept = sorted( hyps_best_kept, key=lambda x: x['score'], reverse=True)[:beam] # sort and get nbest hyps = hyps_best_kept logging.debug('number of pruned hypothes: ' + str(len(hyps))) if char_list is not None: logging.debug( 'best hypo: ' + ''.join([char_list[int(x)] for x in hyps[0]['yseq'][1:]])) # add eos in the final loop to avoid that there are no ended hyps if i == maxlen - 1: logging.info('adding <eos> in the last postion in the loop') for hyp in hyps: hyp['yseq'].append(self.eos) # add ended hypothes to a final list, and removed them from current hypothes # (this will be a probmlem, number of hyps < beam) remained_hyps = [] for hyp in hyps: if hyp['yseq'][-1] == self.eos: # only store the sequence that has more than minlen outputs # also add penalty if len(hyp['yseq']) > minlen: hyp['score'] += (i + 1) * penalty if rnnlm: # Word LM needs to add final <eos> score hyp['score'] += recog_args.lm_weight * rnnlm.final( hyp['rnnlm_prev']) ended_hyps.append(hyp) else: remained_hyps.append(hyp) # end detection from espnet.nets.e2e_asr_common import end_detect if end_detect(ended_hyps, i) and recog_args.maxlenratio == 0.0: logging.info('end detected at %d', i) break hyps = remained_hyps if len(hyps) > 0: logging.debug('remeined hypothes: ' + str(len(hyps))) else: logging.info('no hypothesis. Finish decoding.') break if char_list is not None: for hyp in hyps: logging.debug( 'hypo: ' + ''.join([char_list[int(x)] for x in hyp['yseq'][1:]])) logging.debug('number of ended hypothes: ' + str(len(ended_hyps))) nbest_hyps = sorted( ended_hyps, key=lambda x: x['score'], reverse=True)[:min(len(ended_hyps), recog_args.nbest)] # check number of hypotheis if len(nbest_hyps) == 0: logging.warning('there is no N-best results, perform recognition again with smaller minlenratio.') # should copy becasuse Namespace will be overwritten globally recog_args = Namespace(**vars(recog_args)) recog_args.minlenratio = max(0.0, recog_args.minlenratio - 0.1) return self.recognize(feat, recog_args, char_list, rnnlm) logging.info('total log probability: ' + str(nbest_hyps[0]['score'])) logging.info('normalized log probability: ' + str(nbest_hyps[0]['score'] / len(nbest_hyps[0]['yseq']))) return nbest_hyps
[docs] def calculate_all_attentions(self, xs_pad, ilens, ys_pad): '''E2E attention calculation :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim) :param torch.Tensor ilens: batch of lengths of input sequences (B) :param torch.Tensor ys_pad: batch of padded character id sequence tensor (B, Lmax) :return: attention weights with the following shape, 1) multi-head case => attention weights (B, H, Lmax, Tmax), 2) other case => attention weights (B, Lmax, Tmax). :rtype: float ndarray ''' with torch.no_grad(): self.forward(xs_pad, ilens, ys_pad) ret = dict() for name, m in self.named_modules(): if isinstance(m, MultiHeadedAttention): ret[name] = m.attn.cpu().numpy() return ret