Source code for espnet.nets.pytorch_backend.ctc

import logging

import numpy as np
import torch
import torch.nn.functional as F

from espnet.nets.pytorch_backend.nets_utils import to_device


[docs]class CTC(torch.nn.Module): """CTC module :param int odim: dimension of outputs :param int eprojs: number of encoder projection units :param float dropout_rate: dropout rate (0.0 ~ 1.0) :param str ctc_type: builtin or warpctc :param bool reduce: reduce the CTC loss into a scalar """ def __init__(self, odim, eprojs, dropout_rate, ctc_type='warpctc', reduce=True): super().__init__() self.dropout_rate = dropout_rate self.loss = None self.ctc_lo = torch.nn.Linear(eprojs, odim) self.ctc_type = ctc_type if self.ctc_type == 'builtin': reduction_type = 'sum' if reduce else 'none' self.ctc_loss = torch.nn.CTCLoss(reduction=reduction_type) elif self.ctc_type == 'warpctc': import warpctc_pytorch as warp_ctc self.ctc_loss = warp_ctc.CTCLoss(size_average=True, reduce=reduce) else: raise ValueError('ctc_type must be "builtin" or "warpctc": {}' .format(self.ctc_type)) self.ignore_id = -1 self.reduce = reduce
[docs] def loss_fn(self, th_pred, th_target, th_ilen, th_olen): if self.ctc_type == 'builtin': th_pred = th_pred.log_softmax(2) loss = self.ctc_loss(th_pred, th_target, th_ilen, th_olen) # Batch-size average loss = loss / th_pred.size(1) return loss elif self.ctc_type == 'warpctc': return self.ctc_loss(th_pred, th_target, th_ilen, th_olen) else: raise NotImplementedError
[docs] def forward(self, hs_pad, hlens, ys_pad): """CTC forward :param torch.Tensor hs_pad: batch of padded hidden state sequences (B, Tmax, D) :param torch.Tensor hlens: batch of lengths of hidden state sequences (B) :param torch.Tensor ys_pad: batch of padded character id sequence tensor (B, Lmax) :return: ctc loss value :rtype: torch.Tensor """ # TODO(kan-bayashi): need to make more smart way ys = [y[y != self.ignore_id] for y in ys_pad] # parse padded ys self.loss = None hlens = torch.from_numpy(np.fromiter(hlens, dtype=np.int32)) olens = torch.from_numpy(np.fromiter( (x.size(0) for x in ys), dtype=np.int32)) # zero padding for hs ys_hat = self.ctc_lo(F.dropout(hs_pad, p=self.dropout_rate)) # zero padding for ys ys_true = torch.cat(ys).cpu().int() # batch x olen # get length info logging.info(self.__class__.__name__ + ' input lengths: ' + ''.join(str(hlens).split('\n'))) logging.info(self.__class__.__name__ + ' output lengths: ' + ''.join(str(olens).split('\n'))) # get ctc loss # expected shape of seqLength x batchSize x alphabet_size dtype = ys_hat.dtype ys_hat = ys_hat.transpose(0, 1) if self.ctc_type == "warpctc": # warpctc only supports float32 ys_hat = ys_hat.to(dtype=torch.float32) self.loss = to_device(self, self.loss_fn(ys_hat, ys_true, hlens, olens)).to(dtype=dtype) if self.reduce: # NOTE: sum() is needed to keep consistency since warpctc return as tensor w/ shape (1,) # but builtin return as tensor w/o shape (scalar). self.loss = self.loss.sum() logging.info('ctc loss:' + str(float(self.loss))) return self.loss
[docs] def log_softmax(self, hs_pad): """log_softmax of frame activations :param torch.Tensor hs_pad: 3d tensor (B, Tmax, eprojs) :return: log softmax applied 3d tensor (B, Tmax, odim) :rtype: torch.Tensor """ return F.log_softmax(self.ctc_lo(hs_pad), dim=2)
[docs] def argmax(self, hs_pad): """argmax of frame activations :param torch.Tensor hs_pad: 3d tensor (B, Tmax, eprojs) :return: argmax applied 2d tensor (B, Tmax) :rtype: torch.Tensor """ return torch.argmax(self.ctc_lo(hs_pad), dim=2)
[docs]def ctc_for(args, odim, reduce=True): """Returns the CTC module for the given args and output dimension :param Namespace args: the program args :param int odim : The output dimension :param bool reduce : return the CTC loss in a scalar :return: the corresponding CTC module """ return CTC(odim, args.eprojs, args.dropout_rate, ctc_type=args.ctc_type, reduce=reduce)