Source code for espnet.nets.e2e_asr_common

#!/usr/bin/env python

# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

import editdistance
import json
import logging
import numpy as np
import six
import sys

from itertools import groupby


[docs]def end_detect(ended_hyps, i, M=3, D_end=np.log(1 * np.exp(-10))): """End detection desribed in Eq. (50) of S. Watanabe et al "Hybrid CTC/Attention Architecture for End-to-End Speech Recognition" :param ended_hyps: :param i: :param M: :param D_end: :return: """ if len(ended_hyps) == 0: return False count = 0 best_hyp = sorted(ended_hyps, key=lambda x: x['score'], reverse=True)[0] for m in six.moves.range(M): # get ended_hyps with their length is i - m hyp_length = i - m hyps_same_length = [x for x in ended_hyps if len(x['yseq']) == hyp_length] if len(hyps_same_length) > 0: best_hyp_same_length = sorted(hyps_same_length, key=lambda x: x['score'], reverse=True)[0] if best_hyp_same_length['score'] - best_hyp['score'] < D_end: count += 1 if count == M: return True else: return False
# TODO(takaaki-hori): add different smoothing methods
[docs]def label_smoothing_dist(odim, lsm_type, transcript=None, blank=0): """Obtain label distribution for loss smoothing :param odim: :param lsm_type: :param blank: :param transcript: :return: """ if transcript is not None: with open(transcript, 'rb') as f: trans_json = json.load(f)['utts'] if lsm_type == 'unigram': assert transcript is not None, 'transcript is required for %s label smoothing' % lsm_type labelcount = np.zeros(odim) for k, v in trans_json.items(): ids = np.array([int(n) for n in v['output'][0]['tokenid'].split()]) # to avoid an error when there is no text in an uttrance if len(ids) > 0: labelcount[ids] += 1 labelcount[odim - 1] = len(transcript) # count <eos> labelcount[labelcount == 0] = 1 # flooring labelcount[blank] = 0 # remove counts for blank labeldist = labelcount.astype(np.float32) / np.sum(labelcount) else: logging.error( "Error: unexpected label smoothing type: %s" % lsm_type) sys.exit() return labeldist
[docs]def get_vgg2l_odim(idim, in_channel=3, out_channel=128): idim = idim / in_channel idim = np.ceil(np.array(idim, dtype=np.float32) / 2) # 1st max pooling idim = np.ceil(np.array(idim, dtype=np.float32) / 2) # 2nd max pooling return int(idim) * out_channel # numer of channels
[docs]class ErrorCalculator(object): """Calculate CER and WER for E2E_ASR and CTC models during training :param y_hats: numpy array with predicted text :param y_pads: numpy array with true (target) text :param char_list: :param sym_space: :param sym_blank: :return: """ def __init__(self, char_list, sym_space, sym_blank, report_cer=False, report_wer=False): super(ErrorCalculator, self).__init__() self.char_list = char_list self.space = sym_space self.blank = sym_blank self.report_cer = report_cer self.report_wer = report_wer self.idx_blank = self.char_list.index(self.blank) if self.space in self.char_list: self.idx_space = self.char_list.index(self.space) else: self.idx_space = None def __call__(self, ys_hat, ys_pad, is_ctc=False): cer, wer = None, None if is_ctc: return self.calculate_cer_ctc(ys_hat, ys_pad) elif not self.report_cer and not self.report_wer: return cer, wer seqs_hat, seqs_true = self.convert_to_char(ys_hat, ys_pad) if self.report_cer: cer = self.calculate_cer(seqs_hat, seqs_true) if self.report_wer: wer = self.calculate_wer(seqs_hat, seqs_true) return cer, wer
[docs] def calculate_cer_ctc(self, ys_hat, ys_pad): cers, char_ref_lens = [], [] for i, y in enumerate(ys_hat): y_hat = [x[0] for x in groupby(y)] y_true = ys_pad[i] seq_hat, seq_true = [], [] for idx in y_hat: idx = int(idx) if idx != -1 and idx != self.idx_blank and idx != self.idx_space: seq_hat.append(self.char_list[int(idx)]) for idx in y_true: idx = int(idx) if idx != -1 and idx != self.idx_blank and idx != self.idx_space: seq_true.append(self.char_list[int(idx)]) hyp_chars = "".join(seq_hat) ref_chars = "".join(seq_true) if len(ref_chars) > 0: cers.append(editdistance.eval(hyp_chars, ref_chars)) char_ref_lens.append(len(ref_chars)) cer_ctc = float(sum(cers)) / sum(char_ref_lens) if cers else None return cer_ctc
[docs] def convert_to_char(self, ys_hat, ys_pad): seqs_hat, seqs_true = [], [] for i, y_hat in enumerate(ys_hat): y_true = ys_pad[i] eos_true = np.where(y_true == -1)[0] eos_true = eos_true[0] if len(eos_true) > 0 else len(y_true) # To avoid wrong higger WER than the one obtained from the decoding # eos from y_true is used to mark the eos in y_hat # because of that y_hats has not padded outs with -1. seq_hat = [self.char_list[int(idx)] for idx in y_hat[:eos_true]] seq_true = [self.char_list[int(idx)] for idx in y_true if int(idx) != -1] seq_hat_text = "".join(seq_hat).replace(self.space, ' ') seq_hat_text = seq_hat_text.replace(self.blank, '') seq_true_text = "".join(seq_true).replace(self.space, ' ') seqs_hat.append(seq_hat_text) seqs_true.append(seq_true_text) return seqs_hat, seqs_true
[docs] def calculate_cer(self, seqs_hat, seqs_true): char_eds, char_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_chars = seq_hat_text.replace(' ', '') ref_chars = seq_true_text.replace(' ', '') char_eds.append(editdistance.eval(hyp_chars, ref_chars)) char_ref_lens.append(len(ref_chars)) return float(sum(char_eds)) / sum(char_ref_lens)
[docs] def calculate_wer(self, seqs_hat, seqs_true): word_eds, word_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_words = seq_hat_text.split() ref_words = seq_true_text.split() word_eds.append(editdistance.eval(hyp_words, ref_words)) word_ref_lens.append(len(ref_words)) return float(sum(word_eds)) / sum(word_ref_lens)