Source code for espnet.bin.tts_train

#!/usr/bin/env python3

# Copyright 2018 Nagoya University (Tomoki Hayashi)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""TTS training script."""


import configargparse
import logging
import os
import random
import subprocess
import sys

import numpy as np

from espnet.nets.tts_interface import TTSInterface
from espnet.utils.cli_utils import strtobool
from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES


# NOTE: you need this func to generate our sphinx doc
[docs]def get_parser(): """Get parser of training arguments.""" parser = configargparse.ArgumentParser( description='Train a new text-to-speech (TTS) model on one CPU, one or multiple GPUs', config_file_parser_class=configargparse.YAMLConfigFileParser, formatter_class=configargparse.ArgumentDefaultsHelpFormatter) # general configuration parser.add('--config', is_config_file=True, help='config file path') parser.add('--config2', is_config_file=True, help='second config file path that overwrites the settings in `--config`.') parser.add('--config3', is_config_file=True, help='third config file path that overwrites the settings in `--config` and `--config2`.') parser.add_argument('--ngpu', default=None, type=int, help='Number of GPUs. If not given, use all visible devices') parser.add_argument('--backend', default='pytorch', type=str, choices=['chainer', 'pytorch'], help='Backend library') parser.add_argument('--outdir', type=str, required=True, help='Output directory') parser.add_argument('--debugmode', default=1, type=int, help='Debugmode') parser.add_argument('--seed', default=1, type=int, help='Random seed') parser.add_argument('--resume', '-r', default='', type=str, nargs='?', help='Resume the training from snapshot') parser.add_argument('--minibatches', '-N', type=int, default='-1', help='Process only N minibatches (for debug)') parser.add_argument('--verbose', '-V', default=0, type=int, help='Verbose option') parser.add_argument('--tensorboard-dir', default=None, type=str, nargs='?', help="Tensorboard log directory path") parser.add_argument('--save-interval-epochs', default=1, type=int, help="Save interval epochs") parser.add_argument('--report-interval-iters', default=100, type=int, help="Report interval iterations") # task related parser.add_argument('--train-json', type=str, required=True, help='Filename of training json') parser.add_argument('--valid-json', type=str, required=True, help='Filename of validation json') # network architecture parser.add_argument('--model-module', type=str, default="espnet.nets.pytorch_backend.e2e_tts_tacotron2:Tacotron2", help='model defined module') # minibatch related parser.add_argument('--sortagrad', default=0, type=int, nargs='?', help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs") parser.add_argument('--batch-sort-key', default='shuffle', type=str, choices=['shuffle', 'output', 'input'], nargs='?', help='Batch sorting key. "shuffle" only work with --batch-count "seq".') parser.add_argument('--batch-count', default='auto', choices=BATCH_COUNT_CHOICES, help='How to count batch_size. The default (auto) will find how to count by args.') parser.add_argument('--batch-size', '--batch-seqs', '-b', default=0, type=int, help='Maximum seqs in a minibatch (0 to disable)') parser.add_argument('--batch-bins', default=0, type=int, help='Maximum bins in a minibatch (0 to disable)') parser.add_argument('--batch-frames-in', default=0, type=int, help='Maximum input frames in a minibatch (0 to disable)') parser.add_argument('--batch-frames-out', default=0, type=int, help='Maximum output frames in a minibatch (0 to disable)') parser.add_argument('--batch-frames-inout', default=0, type=int, help='Maximum input+output frames in a minibatch (0 to disable)') parser.add_argument('--maxlen-in', '--batch-seq-maxlen-in', default=100, type=int, metavar='ML', help='When --batch-count=seq, batch size is reduced if the input sequence length > ML.') parser.add_argument('--maxlen-out', '--batch-seq-maxlen-out', default=200, type=int, metavar='ML', help='When --batch-count=seq, batch size is reduced if the output sequence length > ML') parser.add_argument('--num-iter-processes', default=0, type=int, help='Number of processes of iterator') parser.add_argument('--preprocess-conf', type=str, default=None, help='The configuration file for the pre-processing') parser.add_argument('--use-speaker-embedding', default=False, type=strtobool, help='Whether to use speaker embedding') parser.add_argument('--use-second-target', default=False, type=strtobool, help='Whether to use second target') # optimization related parser.add_argument('--opt', default='adam', type=str, choices=['adam', 'noam'], help='Optimizer') parser.add_argument('--accum-grad', default=1, type=int, help='Number of gradient accumuration') parser.add_argument('--lr', default=1e-3, type=float, help='Learning rate for optimizer') parser.add_argument('--eps', default=1e-6, type=float, help='Epsilon for optimizer') parser.add_argument('--weight-decay', default=1e-6, type=float, help='Weight decay coefficient for optimizer') parser.add_argument('--epochs', '-e', default=30, type=int, help='Number of maximum epochs') parser.add_argument('--early-stop-criterion', default='validation/main/loss', type=str, nargs='?', help="Value to monitor to trigger an early stopping of the training") parser.add_argument('--patience', default=3, type=int, nargs='?', help="Number of epochs to wait without improvement before stopping the training") parser.add_argument('--grad-clip', default=1, type=float, help='Gradient norm threshold to clip') parser.add_argument('--num-save-attention', default=5, type=int, help='Number of samples of attention to be saved') parser.add_argument('--keep-all-data-on-mem', default=False, type=strtobool, help='Whether to keep all data on memory') return parser
[docs]def main(cmd_args): """Run training.""" parser = get_parser() args, _ = parser.parse_known_args(cmd_args) from espnet.utils.dynamic_import import dynamic_import model_class = dynamic_import(args.model_module) assert issubclass(model_class, TTSInterface) model_class.add_arguments(parser) args = parser.parse_args(cmd_args) # logging info if args.verbose > 0: logging.basicConfig( level=logging.INFO, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') else: logging.basicConfig( level=logging.WARN, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') logging.warning('Skip DEBUG/INFO messages') # If --ngpu is not given, # 1. if CUDA_VISIBLE_DEVICES is set, all visible devices # 2. if nvidia-smi exists, use all devices # 3. else ngpu=0 if args.ngpu is None: cvd = os.environ.get("CUDA_VISIBLE_DEVICES") if cvd is not None: ngpu = len(cvd.split(',')) else: logging.warning("CUDA_VISIBLE_DEVICES is not set.") try: p = subprocess.run(['nvidia-smi', '-L'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) except (subprocess.CalledProcessError, FileNotFoundError): ngpu = 0 else: ngpu = len(p.stderr.decode().split('\n')) - 1 else: ngpu = args.ngpu logging.info(f"ngpu: {ngpu}") # set random seed logging.info('random seed = %d' % args.seed) random.seed(args.seed) np.random.seed(args.seed) if args.backend == "pytorch": from espnet.tts.pytorch_backend.tts import train train(args) else: raise NotImplementedError("Only pytorch is supported.")
if __name__ == "__main__": main(sys.argv[1:])