Source code for espnet.bin.mt_train

#!/usr/bin/env python
# encoding: utf-8

# Copyright 2019 Kyoto University (Hirofumi Inaguma)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)


import configargparse
import logging
import os
import platform
import random
import subprocess
import sys

import numpy as np

from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES


# NOTE: you need this func to generate our sphinx doc
[docs]def get_parser(): parser = configargparse.ArgumentParser( description="Train an automatic speech recognition (ASR) model on one CPU, one or multiple GPUs", config_file_parser_class=configargparse.YAMLConfigFileParser, formatter_class=configargparse.ArgumentDefaultsHelpFormatter) # general configuration parser.add('--config', is_config_file=True, help='config file path') parser.add('--config2', is_config_file=True, help='second config file path that overwrites the settings in `--config`.') parser.add('--config3', is_config_file=True, help='third config file path that overwrites the settings in `--config` and `--config2`.') parser.add_argument('--ngpu', default=0, type=int, help='Number of GPUs') parser.add_argument('--backend', default='chainer', type=str, choices=['chainer', 'pytorch'], help='Backend library') parser.add_argument('--outdir', type=str, required=True, help='Output directory') parser.add_argument('--debugmode', default=1, type=int, help='Debugmode') parser.add_argument('--dict-tgt', required=True, help='Dictionary for target language') parser.add_argument('--dict-src', default='', nargs='?', help='Dictionary for source language. \ Dictionanies are shared between soruce and target languages in default setting.') parser.add_argument('--seed', default=1, type=int, help='Random seed') parser.add_argument('--debugdir', type=str, help='Output directory for debugging') parser.add_argument('--resume', '-r', default='', nargs='?', help='Resume the training from snapshot') parser.add_argument('--minibatches', '-N', type=int, default='-1', help='Process only N minibatches (for debug)') parser.add_argument('--verbose', '-V', default=0, type=int, help='Verbose option') parser.add_argument('--tensorboard-dir', default=None, type=str, nargs='?', help="Tensorboard log dir path") parser.add_argument('--report-interval-iters', default=100, type=int, help="Report interval iterations") # task related parser.add_argument('--train-json', type=str, default=None, help='Filename of train label data (json)') parser.add_argument('--valid-json', type=str, default=None, help='Filename of validation label data (json)') # network architecture parser.add_argument('--model-module', type=str, default=None, help='model defined module (default: espnet.nets.xxx_backend.e2e_mt:E2E)') # encoder parser.add_argument('--etype', default='blstmp', type=str, choices=['lstm', 'blstm', 'lstmp', 'blstmp', 'gru', 'bgru', 'grup', 'bgrup'], help='Type of encoder network architecture (VGG is not supported for NMT)') parser.add_argument('--elayers', default=4, type=int, help='Number of encoder layers') parser.add_argument('--eunits', '-u', default=1024, type=int, help='Number of encoder hidden units') parser.add_argument('--eprojs', default=1024, type=int, help='Number of encoder projection units') parser.add_argument('--subsample', default="1", type=str, help='Subsample input frames x_y_z means subsample every x frame at 1st layer, ' 'every y frame at 2nd layer etc.') # attention parser.add_argument('--atype', default='dot', type=str, choices=['noatt', 'dot', 'add', 'location', 'coverage', 'coverage_location', 'location2d', 'location_recurrent', 'multi_head_dot', 'multi_head_add', 'multi_head_loc', 'multi_head_multi_res_loc'], help='Type of attention architecture') parser.add_argument('--adim', default=1024, type=int, help='Number of attention transformation dimensions') parser.add_argument('--awin', default=5, type=int, help='Window size for location2d attention') parser.add_argument('--aheads', default=4, type=int, help='Number of heads for multi head attention') parser.add_argument('--aconv-chans', default=-1, type=int, help='Number of attention convolution channels \ (negative value indicates no location-aware attention)') parser.add_argument('--aconv-filts', default=100, type=int, help='Number of attention convolution filters \ (negative value indicates no location-aware attention)') # decoder parser.add_argument('--dtype', default='lstm', type=str, choices=['lstm', 'gru'], help='Type of decoder network architecture') parser.add_argument('--dlayers', default=1, type=int, help='Number of decoder layers') parser.add_argument('--dunits', default=1024, type=int, help='Number of decoder hidden units') parser.add_argument('--lsm-type', const='', default='', type=str, nargs='?', choices=['', 'unigram'], help='Apply label smoothing with a specified distribution type') parser.add_argument('--lsm-weight', default=0.0, type=float, help='Label smoothing weight') parser.add_argument('--sampling-probability', default=0.0, type=float, help='Ratio of predicted labels fed back to decoder') # recognition options to compute CER/WER parser.add_argument('--nbest', type=int, default=1, help='Output N-best hypotheses') parser.add_argument('--beam-size', type=int, default=4, help='Beam size') parser.add_argument('--penalty', default=0.0, type=float, help='Incertion penalty') parser.add_argument('--maxlenratio', default=0.0, type=float, help="""Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths""") parser.add_argument('--minlenratio', default=0.0, type=float, help='Input length ratio to obtain min output length') parser.add_argument('--rnnlm', type=str, default=None, help='RNNLM model file to read') parser.add_argument('--rnnlm-conf', type=str, default=None, help='RNNLM model config file to read') parser.add_argument('--lm-weight', default=0.0, type=float, help='RNNLM weight.') parser.add_argument('--sym-space', default='<space>', type=str, help='Space symbol') parser.add_argument('--sym-blank', default='<blank>', type=str, help='Blank symbol') # model (parameter) related parser.add_argument('--dropout-rate', default=0.0, type=float, help='Dropout rate for the encoder') parser.add_argument('--dropout-rate-decoder', default=0.0, type=float, help='Dropout rate for the decoder') # minibatch related parser.add_argument('--sortagrad', default=0, type=int, nargs='?', help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs") parser.add_argument('--batch-count', default='auto', choices=BATCH_COUNT_CHOICES, help='How to count batch_size. The default (auto) will find how to count by args.') parser.add_argument('--batch-size', '--batch-seqs', '-b', default=0, type=int, help='Maximum seqs in a minibatch (0 to disable)') parser.add_argument('--batch-bins', default=0, type=int, help='Maximum bins in a minibatch (0 to disable)') parser.add_argument('--batch-frames-in', default=0, type=int, help='Maximum input frames in a minibatch (0 to disable)') parser.add_argument('--batch-frames-out', default=0, type=int, help='Maximum output frames in a minibatch (0 to disable)') parser.add_argument('--batch-frames-inout', default=0, type=int, help='Maximum input+output frames in a minibatch (0 to disable)') parser.add_argument('--maxlen-in', '--batch-seq-maxlen-in', default=100, type=int, metavar='ML', help='When --batch-count=seq, batch size is reduced if the input sequence length > ML.') parser.add_argument('--maxlen-out', '--batch-seq-maxlen-out', default=100, type=int, metavar='ML', help='When --batch-count=seq, batch size is reduced if the output sequence length > ML') parser.add_argument('--n-iter-processes', default=0, type=int, help='Number of processes of iterator') parser.add_argument('--preprocess-conf', type=str, default=None, help='The configuration file for the pre-processing') # optimization related parser.add_argument('--opt', default='adadelta', type=str, choices=['adadelta', 'adam', 'noam'], help='Optimizer') parser.add_argument('--accum-grad', default=1, type=int, help='Number of gradient accumuration') parser.add_argument('--eps', default=1e-8, type=float, help='Epsilon constant for optimizer') parser.add_argument('--eps-decay', default=0.01, type=float, help='Decaying ratio of epsilon') parser.add_argument('--weight-decay', default=0.0, type=float, help='Weight decay ratio') parser.add_argument('--criterion', default='acc', type=str, choices=['loss', 'acc'], help='Criterion to perform epsilon decay') parser.add_argument('--threshold', default=1e-4, type=float, help='Threshold to stop iteration') parser.add_argument('--epochs', '-e', default=30, type=int, help='Maximum number of epochs') parser.add_argument('--early-stop-criterion', default='validation/main/acc', type=str, nargs='?', help="Value to monitor to trigger an early stopping of the training") parser.add_argument('--patience', default=3, type=int, nargs='?', help="Number of epochs to wait without improvement before stopping the training") parser.add_argument('--grad-clip', default=5, type=float, help='Gradient norm threshold to clip') parser.add_argument('--num-save-attention', default=3, type=int, help='Number of samples of attention to be saved') # decoder related parser.add_argument('--context-residual', default='', nargs='?', help='') # multilingual NMT related parser.add_argument('--replace-sos', default=False, nargs='?', help='Replace <sos> in the decoder with a target language ID \ (the first token in the target sequence)') return parser
[docs]def main(cmd_args): parser = get_parser() args, _ = parser.parse_known_args(cmd_args) from espnet.utils.dynamic_import import dynamic_import if args.model_module is not None: model_class = dynamic_import(args.model_module) model_class.add_arguments(parser) args = parser.parse_args(cmd_args) if args.model_module is None: args.model_module = "espnet.nets." + args.backend + "_backend.e2e_mt:E2E" if 'chainer_backend' in args.model_module: args.backend = 'chainer' if 'pytorch_backend' in args.model_module: args.backend = 'pytorch' # logging info if args.verbose > 0: logging.basicConfig( level=logging.INFO, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') else: logging.basicConfig( level=logging.WARN, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') logging.warning('Skip DEBUG/INFO messages') # check CUDA_VISIBLE_DEVICES if args.ngpu > 0: # python 2 case if platform.python_version_tuple()[0] == '2': if "clsp.jhu.edu" in subprocess.check_output(["hostname", "-f"]): cvd = subprocess.check_output(["/usr/local/bin/free-gpu", "-n", str(args.ngpu)]).strip() logging.info('CLSP: use gpu' + cvd) os.environ['CUDA_VISIBLE_DEVICES'] = cvd # python 3 case else: if "clsp.jhu.edu" in subprocess.check_output(["hostname", "-f"]).decode(): cvd = subprocess.check_output(["/usr/local/bin/free-gpu", "-n", str(args.ngpu)]).decode().strip() logging.info('CLSP: use gpu' + cvd) os.environ['CUDA_VISIBLE_DEVICES'] = cvd cvd = os.environ.get("CUDA_VISIBLE_DEVICES") if cvd is None: logging.warning("CUDA_VISIBLE_DEVICES is not set.") elif args.ngpu != len(cvd.split(",")): logging.error("#gpus is not matched with CUDA_VISIBLE_DEVICES.") sys.exit(1) # display PYTHONPATH logging.info('python path = ' + os.environ.get('PYTHONPATH', '(None)')) # set random seed logging.info('random seed = %d' % args.seed) random.seed(args.seed) np.random.seed(args.seed) # load dictionary for debug log if args.dict_tgt is not None: with open(args.dict_tgt, 'rb') as f: dictionary = f.readlines() char_list = [entry.decode('utf-8').split(' ')[0] for entry in dictionary] char_list.insert(0, '<blank>') char_list.append('<eos>') args.char_list = char_list else: args.char_list = None # train logging.info('backend = ' + args.backend) if args.backend == "chainer": raise NotImplementedError("chainer is not supported for MT now.") # TODO(hirofumi): support chainer backend elif args.backend == "pytorch": from espnet.mt.pytorch_backend.mt import train train(args) else: raise ValueError("Only chainer and pytorch are supported.")
if __name__ == '__main__': main(sys.argv[1:])