Source code for espnet.bin.lm_train

#!/usr/bin/env python3

# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

# This code is ported from the following implementation written in Torch.
# https://github.com/chainer/chainer/blob/master/examples/ptb/train_ptb_custom_loop.py

"""Language model training script."""

from __future__ import division
from __future__ import print_function

import configargparse
import logging

import numpy as np
import os
import random
import subprocess
import sys

from espnet.nets.lm_interface import dynamic_import_lm


# NOTE: you need this func to generate our sphinx doc
[docs]def get_parser(): """Get parser.""" parser = configargparse.ArgumentParser( description='Train a new language model on one CPU or one GPU', config_file_parser_class=configargparse.YAMLConfigFileParser, formatter_class=configargparse.ArgumentDefaultsHelpFormatter) # general configuration parser.add('--config', is_config_file=True, help='config file path') parser.add('--config2', is_config_file=True, help='second config file path that overwrites the settings in `--config`.') parser.add('--config3', is_config_file=True, help='third config file path that overwrites the settings in `--config` and `--config2`.') parser.add_argument('--ngpu', default=None, type=int, help='Number of GPUs. If not given, use all visible devices') parser.add_argument('--train-dtype', default="float32", choices=["float16", "float32", "float64", "O0", "O1", "O2", "O3"], help='Data type for training (only pytorch backend). ' 'O0,O1,.. flags require apex. See https://nvidia.github.io/apex/amp.html#opt-levels') parser.add_argument('--backend', default='chainer', type=str, choices=['chainer', 'pytorch'], help='Backend library') parser.add_argument('--outdir', type=str, required=True, help='Output directory') parser.add_argument('--debugmode', default=1, type=int, help='Debugmode') parser.add_argument('--dict', type=str, required=True, help='Dictionary') parser.add_argument('--seed', default=1, type=int, help='Random seed') parser.add_argument('--resume', '-r', default='', nargs='?', help='Resume the training from snapshot') parser.add_argument('--verbose', '-V', default=0, type=int, help='Verbose option') parser.add_argument('--tensorboard-dir', default=None, type=str, nargs='?', help="Tensorboard log dir path") parser.add_argument('--report-interval-iters', default=100, type=int, help="Report interval iterations") # task related parser.add_argument('--train-label', type=str, required=True, help='Filename of train label data') parser.add_argument('--valid-label', type=str, required=True, help='Filename of validation label data') parser.add_argument('--test-label', type=str, help='Filename of test label data') parser.add_argument('--dump-hdf5-path', type=str, default=None, help='Path to dump a preprocessed dataset as hdf5') # training configuration parser.add_argument('--opt', default='sgd', type=str, choices=['sgd', 'adam'], help='Optimizer') parser.add_argument('--sortagrad', default=0, type=int, nargs='?', help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs") parser.add_argument('--batchsize', '-b', type=int, default=300, help='Number of examples in each mini-batch') parser.add_argument('--epoch', '-e', type=int, default=20, help='Number of sweeps over the dataset to train') parser.add_argument('--early-stop-criterion', default='validation/main/loss', type=str, nargs='?', help="Value to monitor to trigger an early stopping of the training") parser.add_argument('--patience', default=3, type=int, nargs='?', help="Number of epochs to wait without improvement before stopping the training") parser.add_argument('--gradclip', '-c', type=float, default=5, help='Gradient norm threshold to clip') parser.add_argument('--maxlen', type=int, default=40, help='Batch size is reduced if the input sequence > ML') parser.add_argument('--model-module', type=str, default='default', help='model defined module (default: espnet.nets.xxx_backend.lm.default:DefaultRNNLM)') return parser
[docs]def main(cmd_args): """Train LM.""" parser = get_parser() args, _ = parser.parse_known_args(cmd_args) if args.backend == "chainer" and args.train_dtype != "float32": raise NotImplementedError( f"chainer backend does not support --train-dtype {args.train_dtype}." "Use --dtype float32.") if args.ngpu == 0 and args.train_dtype in ("O0", "O1", "O2", "O3", "float16"): raise ValueError(f"--train-dtype {args.train_dtype} does not support the CPU backend.") # parse model-specific arguments dynamically model_class = dynamic_import_lm(args.model_module, args.backend) model_class.add_arguments(parser) args = parser.parse_args(cmd_args) # logging info if args.verbose > 0: logging.basicConfig( level=logging.INFO, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') else: logging.basicConfig( level=logging.WARN, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') logging.warning('Skip DEBUG/INFO messages') # If --ngpu is not given, # 1. if CUDA_VISIBLE_DEVICES is set, all visible devices # 2. if nvidia-smi exists, use all devices # 3. else ngpu=0 if args.ngpu is None: cvd = os.environ.get("CUDA_VISIBLE_DEVICES") if cvd is not None: ngpu = len(cvd.split(',')) else: logging.warning("CUDA_VISIBLE_DEVICES is not set.") try: p = subprocess.run(['nvidia-smi', '-L'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) except (subprocess.CalledProcessError, FileNotFoundError): ngpu = 0 else: ngpu = len(p.stderr.decode().split('\n')) - 1 else: ngpu = args.ngpu logging.info(f"ngpu: {ngpu}") # display PYTHONPATH logging.info('python path = ' + os.environ.get('PYTHONPATH', '(None)')) # seed setting nseed = args.seed random.seed(nseed) np.random.seed(nseed) # load dictionary with open(args.dict, 'rb') as f: dictionary = f.readlines() char_list = [entry.decode('utf-8').split(' ')[0] for entry in dictionary] char_list.insert(0, '<blank>') char_list.append('<eos>') args.char_list_dict = {x: i for i, x in enumerate(char_list)} args.n_vocab = len(char_list) # train logging.info('backend = ' + args.backend) if args.backend == "chainer": from espnet.lm.chainer_backend.lm import train train(args) elif args.backend == "pytorch": from espnet.lm.pytorch_backend.lm import train train(args) else: raise ValueError("Only chainer and pytorch are supported.")
if __name__ == '__main__': main(sys.argv[1:])