Source code for espnet.bin.asr_train

#!/usr/bin/env python3
# encoding: utf-8

# Copyright 2017 Tomoki Hayashi (Nagoya University)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

import configargparse
import logging
import os
import random
import subprocess
import sys

import numpy as np

from espnet.utils.cli_utils import strtobool
from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES


# NOTE: you need this func to generate our sphinx doc
[docs]def get_parser(parser=None, required=True): if parser is None: parser = configargparse.ArgumentParser( description="Train an automatic speech recognition (ASR) model on one CPU, one or multiple GPUs", config_file_parser_class=configargparse.YAMLConfigFileParser, formatter_class=configargparse.ArgumentDefaultsHelpFormatter) # general configuration parser.add('--config', is_config_file=True, help='config file path') parser.add('--config2', is_config_file=True, help='second config file path that overwrites the settings in `--config`.') parser.add('--config3', is_config_file=True, help='third config file path that overwrites the settings in `--config` and `--config2`.') parser.add_argument('--ngpu', default=None, type=int, help='Number of GPUs. If not given, use all visible devices') parser.add_argument('--train-dtype', default="float32", choices=["float16", "float32", "float64", "O0", "O1", "O2", "O3"], help='Data type for training (only pytorch backend). ' 'O0,O1,.. flags require apex. See https://nvidia.github.io/apex/amp.html#opt-levels') parser.add_argument('--backend', default='chainer', type=str, choices=['chainer', 'pytorch'], help='Backend library') parser.add_argument('--outdir', type=str, required=required, help='Output directory') parser.add_argument('--debugmode', default=1, type=int, help='Debugmode') parser.add_argument('--dict', required=required, help='Dictionary') parser.add_argument('--seed', default=1, type=int, help='Random seed') parser.add_argument('--debugdir', type=str, help='Output directory for debugging') parser.add_argument('--resume', '-r', default='', nargs='?', help='Resume the training from snapshot') parser.add_argument('--minibatches', '-N', type=int, default='-1', help='Process only N minibatches (for debug)') parser.add_argument('--verbose', '-V', default=0, type=int, help='Verbose option') parser.add_argument('--tensorboard-dir', default=None, type=str, nargs='?', help="Tensorboard log dir path") parser.add_argument('--report-interval-iters', default=100, type=int, help="Report interval iterations") # task related parser.add_argument('--train-json', type=str, default=None, help='Filename of train label data (json)') parser.add_argument('--valid-json', type=str, default=None, help='Filename of validation label data (json)') # network architecture parser.add_argument('--model-module', type=str, default=None, help='model defined module (default: espnet.nets.xxx_backend.e2e_asr:E2E)') # loss related parser.add_argument('--ctc_type', default='warpctc', type=str, choices=['builtin', 'warpctc'], help='Type of CTC implementation to calculate loss.') parser.add_argument('--mtlalpha', default=0.5, type=float, help='Multitask learning coefficient, alpha: alpha*ctc_loss + (1-alpha)*att_loss ') parser.add_argument('--lsm-type', const='', default='', type=str, nargs='?', choices=['', 'unigram'], help='Apply label smoothing with a specified distribution type') parser.add_argument('--lsm-weight', default=0.0, type=float, help='Label smoothing weight') # recognition options to compute CER/WER parser.add_argument('--report-cer', default=False, action='store_true', help='Compute CER on development set') parser.add_argument('--report-wer', default=False, action='store_true', help='Compute WER on development set') parser.add_argument('--nbest', type=int, default=1, help='Output N-best hypotheses') parser.add_argument('--beam-size', type=int, default=4, help='Beam size') parser.add_argument('--penalty', default=0.0, type=float, help='Incertion penalty') parser.add_argument('--maxlenratio', default=0.0, type=float, help="""Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths""") parser.add_argument('--minlenratio', default=0.0, type=float, help='Input length ratio to obtain min output length') parser.add_argument('--ctc-weight', default=0.3, type=float, help='CTC weight in joint decoding') parser.add_argument('--rnnlm', type=str, default=None, help='RNNLM model file to read') parser.add_argument('--rnnlm-conf', type=str, default=None, help='RNNLM model config file to read') parser.add_argument('--lm-weight', default=0.1, type=float, help='RNNLM weight.') parser.add_argument('--sym-space', default='<space>', type=str, help='Space symbol') parser.add_argument('--sym-blank', default='<blank>', type=str, help='Blank symbol') # minibatch related parser.add_argument('--sortagrad', default=0, type=int, nargs='?', help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs") parser.add_argument('--batch-count', default='auto', choices=BATCH_COUNT_CHOICES, help='How to count batch_size. The default (auto) will find how to count by args.') parser.add_argument('--batch-size', '--batch-seqs', '-b', default=0, type=int, help='Maximum seqs in a minibatch (0 to disable)') parser.add_argument('--batch-bins', default=0, type=int, help='Maximum bins in a minibatch (0 to disable)') parser.add_argument('--batch-frames-in', default=0, type=int, help='Maximum input frames in a minibatch (0 to disable)') parser.add_argument('--batch-frames-out', default=0, type=int, help='Maximum output frames in a minibatch (0 to disable)') parser.add_argument('--batch-frames-inout', default=0, type=int, help='Maximum input+output frames in a minibatch (0 to disable)') parser.add_argument('--maxlen-in', '--batch-seq-maxlen-in', default=800, type=int, metavar='ML', help='When --batch-count=seq, batch size is reduced if the input sequence length > ML.') parser.add_argument('--maxlen-out', '--batch-seq-maxlen-out', default=150, type=int, metavar='ML', help='When --batch-count=seq, batch size is reduced if the output sequence length > ML') parser.add_argument('--n-iter-processes', default=0, type=int, help='Number of processes of iterator') parser.add_argument('--preprocess-conf', type=str, default=None, nargs='?', help='The configuration file for the pre-processing') # optimization related parser.add_argument('--opt', default='adadelta', type=str, choices=['adadelta', 'adam', 'noam'], help='Optimizer') parser.add_argument('--accum-grad', default=1, type=int, help='Number of gradient accumuration') parser.add_argument('--eps', default=1e-8, type=float, help='Epsilon constant for optimizer') parser.add_argument('--eps-decay', default=0.01, type=float, help='Decaying ratio of epsilon') parser.add_argument('--weight-decay', default=0.0, type=float, help='Weight decay ratio') parser.add_argument('--criterion', default='acc', type=str, choices=['loss', 'acc'], help='Criterion to perform epsilon decay') parser.add_argument('--threshold', default=1e-4, type=float, help='Threshold to stop iteration') parser.add_argument('--epochs', '-e', default=30, type=int, help='Maximum number of epochs') parser.add_argument('--early-stop-criterion', default='validation/main/acc', type=str, nargs='?', help="Value to monitor to trigger an early stopping of the training") parser.add_argument('--patience', default=3, type=int, nargs='?', help="Number of epochs to wait without improvement before stopping the training") parser.add_argument('--grad-clip', default=5, type=float, help='Gradient norm threshold to clip') parser.add_argument('--num-save-attention', default=3, type=int, help='Number of samples of attention to be saved') parser.add_argument('--grad-noise', type=strtobool, default=False, help='The flag to switch to use noise injection to gradients during training') # asr_mix related parser.add_argument('--num-spkrs', default=1, type=int, choices=[1, 2], help='Number of speakers in the speech.') parser.add_argument('--spa', action='store_true', help='Enable speaker parallel attention.') parser.add_argument('--elayers-sd', default=4, type=int, help='Number of encoder layers for speaker ' 'differentiate part. (multi-speaker asr mode only)') # speech translation related parser.add_argument('--context-residual', default=False, type=strtobool, nargs='?', help='The flag to switch to use context vector residual in the decoder network') parser.add_argument('--replace-sos', default=False, nargs='?', help='Replace <sos> in the decoder with a target language ID \ (the first token in the target sequence)') # finetuning related parser.add_argument('--enc-init', default=None, type=str, help='Pre-trained ASR model to initialize encoder.') parser.add_argument('--enc-init-mods', default='enc.enc.', type=lambda s: [str(mod) for mod in s.split(',') if s != ''], help='List of encoder modules to initialize, separated by a comma.') parser.add_argument('--dec-init', default=None, type=str, help='Pre-trained ASR, MT or LM model to initialize decoder.') parser.add_argument('--dec-init-mods', default='att., dec.', type=lambda s: [str(mod) for mod in s.split(',') if s != ''], help='List of decoder modules to initialize, separated by a comma.') # front end related parser.add_argument('--use-frontend', type=strtobool, default=False, help='The flag to switch to use frontend system.') # WPE related parser.add_argument('--use-wpe', type=strtobool, default=False, help='Apply Weighted Prediction Error') parser.add_argument('--wtype', default='blstmp', type=str, choices=['lstm', 'blstm', 'lstmp', 'blstmp', 'vgglstmp', 'vggblstmp', 'vgglstm', 'vggblstm', 'gru', 'bgru', 'grup', 'bgrup', 'vgggrup', 'vggbgrup', 'vgggru', 'vggbgru'], help='Type of encoder network architecture ' 'of the mask estimator for WPE. ' '') parser.add_argument('--wlayers', type=int, default=2, help='') parser.add_argument('--wunits', type=int, default=300, help='') parser.add_argument('--wprojs', type=int, default=300, help='') parser.add_argument('--wdropout-rate', type=float, default=0.0, help='') parser.add_argument('--wpe-taps', type=int, default=5, help='') parser.add_argument('--wpe-delay', type=int, default=3, help='') parser.add_argument('--use-dnn-mask-for-wpe', type=strtobool, default=False, help='Use DNN to estimate the power spectrogram. ' 'This option is experimental.') # Beamformer related parser.add_argument('--use-beamformer', type=strtobool, default=True, help='') parser.add_argument('--btype', default='blstmp', type=str, choices=['lstm', 'blstm', 'lstmp', 'blstmp', 'vgglstmp', 'vggblstmp', 'vgglstm', 'vggblstm', 'gru', 'bgru', 'grup', 'bgrup', 'vgggrup', 'vggbgrup', 'vgggru', 'vggbgru'], help='Type of encoder network architecture ' 'of the mask estimator for Beamformer.') parser.add_argument('--blayers', type=int, default=2, help='') parser.add_argument('--bunits', type=int, default=300, help='') parser.add_argument('--bprojs', type=int, default=300, help='') parser.add_argument('--badim', type=int, default=320, help='') parser.add_argument('--ref-channel', type=int, default=-1, help='The reference channel used for beamformer. ' 'By default, the channel is estimated by DNN.') parser.add_argument('--bdropout-rate', type=float, default=0.0, help='') # Feature transform: Normalization parser.add_argument('--stats-file', type=str, default=None, help='The stats file for the feature normalization') parser.add_argument('--apply-uttmvn', type=strtobool, default=True, help='Apply utterance level mean ' 'variance normalization.') parser.add_argument('--uttmvn-norm-means', type=strtobool, default=True, help='') parser.add_argument('--uttmvn-norm-vars', type=strtobool, default=False, help='') # Feature transform: Fbank parser.add_argument('--fbank-fs', type=int, default=16000, help='The sample frequency used for ' 'the mel-fbank creation.') parser.add_argument('--n-mels', type=int, default=80, help='The number of mel-frequency bins.') parser.add_argument('--fbank-fmin', type=float, default=0., help='') parser.add_argument('--fbank-fmax', type=float, default=None, help='') return parser
[docs]def main(cmd_args): parser = get_parser() args, _ = parser.parse_known_args(cmd_args) if args.backend == "chainer" and args.train_dtype != "float32": raise NotImplementedError( f"chainer backend does not support --train-dtype {args.train_dtype}." "Use --dtype float32.") if args.ngpu == 0 and args.train_dtype in ("O0", "O1", "O2", "O3", "float16"): raise ValueError(f"--train-dtype {args.train_dtype} does not support the CPU backend.") from espnet.utils.dynamic_import import dynamic_import if args.model_module is None: model_module = "espnet.nets." + args.backend + "_backend.e2e_asr:E2E" else: model_module = args.model_module model_class = dynamic_import(model_module) model_class.add_arguments(parser) args = parser.parse_args(cmd_args) args.model_module = model_module if 'chainer_backend' in args.model_module: args.backend = 'chainer' if 'pytorch_backend' in args.model_module: args.backend = 'pytorch' # logging info if args.verbose > 0: logging.basicConfig( level=logging.INFO, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') else: logging.basicConfig( level=logging.WARN, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') logging.warning('Skip DEBUG/INFO messages') # If --ngpu is not given, # 1. if CUDA_VISIBLE_DEVICES is set, all visible devices # 2. if nvidia-smi exists, use all devices # 3. else ngpu=0 if args.ngpu is None: cvd = os.environ.get("CUDA_VISIBLE_DEVICES") if cvd is not None: ngpu = len(cvd.split(',')) else: logging.warning("CUDA_VISIBLE_DEVICES is not set.") try: p = subprocess.run(['nvidia-smi', '-L'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) except (subprocess.CalledProcessError, FileNotFoundError): ngpu = 0 else: ngpu = len(p.stderr.decode().split('\n')) - 1 else: ngpu = args.ngpu logging.info(f"ngpu: {ngpu}") # display PYTHONPATH logging.info('python path = ' + os.environ.get('PYTHONPATH', '(None)')) # set random seed logging.info('random seed = %d' % args.seed) random.seed(args.seed) np.random.seed(args.seed) # load dictionary for debug log if args.dict is not None: with open(args.dict, 'rb') as f: dictionary = f.readlines() char_list = [entry.decode('utf-8').split(' ')[0] for entry in dictionary] char_list.insert(0, '<blank>') char_list.append('<eos>') args.char_list = char_list else: args.char_list = None # train logging.info('backend = ' + args.backend) if args.num_spkrs == 1: if args.backend == "chainer": from espnet.asr.chainer_backend.asr import train train(args) elif args.backend == "pytorch": from espnet.asr.pytorch_backend.asr import train train(args) else: raise ValueError("Only chainer and pytorch are supported.") else: # FIXME(kamo): Support --model-module if args.backend == "pytorch": from espnet.asr.pytorch_backend.asr_mix import train train(args) else: raise ValueError("Only pytorch is supported.")
if __name__ == '__main__': main(sys.argv[1:])