Source code for espnet.asr.pytorch_backend.recog

"""V2 backend for `asr_recog.py` using py:class:`espnet.nets.beam_search.BeamSearch`."""

import json
import logging

import torch

from espnet.asr.asr_utils import add_results_to_json
from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import torch_load
from espnet.asr.pytorch_backend.asr import load_trained_model
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.beam_search import BeamSearch
from espnet.nets.lm_interface import dynamic_import_lm
from espnet.nets.scorers.length_bonus import LengthBonus
from espnet.utils.deterministic_utils import set_deterministic_pytorch
from espnet.utils.io_utils import LoadInputsAndTargets


[docs]def recog_v2(args): """Decode with custom models that implements ScorerInterface. Notes: The previous backend espnet.asr.pytorch_backend.asr.recog only supports E2E and RNNLM Args: args (namespace): The program arguments. See py:func:`espnet.bin.asr_recog.get_parser` for details """ logging.warning("experimental API for custom LMs is selected by --api v2") if args.batchsize > 1: raise NotImplementedError("batch decoding is not implemented") if args.streaming_mode is not None: raise NotImplementedError("streaming mode is not implemented") if args.word_rnnlm: raise NotImplementedError("word LM is not implemented") set_deterministic_pytorch(args) model, train_args = load_trained_model(args.model) assert isinstance(model, ASRInterface) model.eval() load_inputs_and_targets = LoadInputsAndTargets( mode='asr', load_output=False, sort_in_input_length=False, preprocess_conf=train_args.preprocess_conf if args.preprocess_conf is None else args.preprocess_conf, preprocess_args={'train': False}) if args.rnnlm: lm_args = get_model_conf(args.rnnlm, args.rnnlm_conf) # NOTE: for a compatibility with less than 0.5.0 version models lm_model_module = getattr(lm_args, "model_module", "default") lm_class = dynamic_import_lm(lm_model_module, lm_args.backend) lm = lm_class(len(train_args.char_list), lm_args) torch_load(args.rnnlm, lm) lm.eval() else: lm = None scorers = model.scorers() scorers["lm"] = lm scorers["length_bonus"] = LengthBonus(len(train_args.char_list)) weights = dict( decoder=1.0 - args.ctc_weight, ctc=args.ctc_weight, lm=args.lm_weight, length_bonus=args.penalty) beam_search = BeamSearch( beam_size=args.beam_size, vocab_size=len(train_args.char_list), weights=weights, scorers=scorers, sos=model.sos, eos=model.eos, token_list=train_args.char_list, ) if args.ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") if args.ngpu == 1: device = "cuda" else: device = "cpu" dtype = getattr(torch, args.dtype) logging.info(f"Decoding device={device}, dtype={dtype}") model.to(device=device, dtype=dtype).eval() beam_search.to(device=device, dtype=dtype).eval() # read json data with open(args.recog_json, 'rb') as f: js = json.load(f)['utts'] new_js = {} with torch.no_grad(): for idx, name in enumerate(js.keys(), 1): logging.info('(%d/%d) decoding ' + name, idx, len(js.keys())) batch = [(name, js[name])] feat = load_inputs_and_targets(batch)[0][0] enc = model.encode(torch.as_tensor(feat).to(device=device, dtype=dtype)) nbest_hyps = beam_search(x=enc, maxlenratio=args.maxlenratio, minlenratio=args.minlenratio) nbest_hyps = [h.asdict() for h in nbest_hyps[:min(len(nbest_hyps), args.nbest)]] new_js[name] = add_results_to_json(js[name], nbest_hyps, train_args.char_list) with open(args.result_label, 'wb') as f: f.write(json.dumps({'utts': new_js}, indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8'))